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1 Introduction

1.1 The Seiberg-Witten Equations

Seiberg-Witten theory is the study of solutions to a set of partial differential equations, called the Seiberg-
Witten or monopole equations. They are formulated on a smooth, closed, oriented 4-manifold, and read:

D+
AΦ = 0 ,

F+

Â
= σ(Φ,Φ) + ω ,

They depend on the choice of a Spinc-structure s on the manifold as well as two parameters:

(i) a Riemannian metric g on X , and

(ii) an imaginary-valued self-dual 2-form ω on X .

They are interpreted as equations for a pair (A,Φ), where

• Φ is a positive (or left-handed) Weyl spinor: A section of the (rank two) spinor bundle V+ determined by s,

• Â is a U(1)-connection on the line bundle L = Λ2V+, induced by a Spinc-connection A on V+,

• D+
A is the Dirac operator on V+ induced by A,

• F+

Â
is the self-dual part of the curvature of Â, and

• σ(Φ,Φ) is a self-dual 2-form defined by the spinor Φ.

The Seiberg-Witten (SW) equations are non-linear PDEs, since D+
AΦ contains the quadratic term AΦ while

σ(Φ,Φ) is quadratic in Φ. To study the solution space of the SW equations for a given (s, g, ω) we use Cs,
the affine space of all configurations (A,Φ), and Zs = Zs(g, ω) ⊂ Cs, the space of all solutions to the SW
equations.
The space of configurations is acted on by the gauge group G = C∞(X,S1). This gives rise to the spaces
Bs = Cs/G and Ms = Ms(g, ω) = Zs(g, ω)/G. The latter is called the Seiberg-Witten moduli space. For
a generic choice of (g, ω) this is a smooth, finite-dimensional, closed, oriented manifold. Note that Bs is
infinite-dimensional and that Ms ⊂ Bs. The Seiberg-Witten invariants are integrals of certain differential
forms over the moduli space.

1.2 Physical Motivation

The study of the Seiberg-Witten equations was initiated by physicists in the context of supersymmetric field
theory. In physics, a field theory on a manifoldX is typically determined by a Lagrangian L, which depends
on A and Φ. Path integrals are integrals over functions on Cs, weighted by exp(

∫
X
L).

In physics, configurations connected by a gauge transformation are regarded as equivalent (a principle
called gauge symmetry) and therefore the path integral can be reduced to an integral over the quotient Bs
(which is still infinite-dimensional). In the special field theory originally considered by Seiberg and Witten,
there is a further reduction: In the limit of small coupling, the integral over Bs localizes to an integral over
the (finite-dimensional) moduli space. Hence, the integrals are rigorously defined; they correspond to the
SW invariants which we will construct.

It turns out that these path integrals do not depend on the choice of (g, ω). However, the SW invariants
can depend on the smooth structure of X4. Indeed, it is possible to construct 4-manifolds X and Y that are
homeomorphic but admit different SW invariants, hence are not (oriented) diffeomorphic. This gives rise
to a phenomenon called exotic 4-manifolds. During this course, we will proceed as follows:

(i) define and understand the structures appearing in the SW equations,

(ii) study the properties of the SW moduli space,

(iii) prove that the SW invariants do not depend on choice of (g, ω), and

(iv) use these invariants to study smooth 4-manifolds.
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2 Spin and Spinc Structures

2.1 Clifford Modules

Definition 2.1 (Clifford Module). Let H be a finite-dimensional, real vector space with a Euclidean scalar
product g. A Clifford Module for H is a finite dimensional complex vector space V equipped with a Her-
mitian scalar product together with a linear map γ : H → End(V ) satisfying

• γ(v)† = −γ(v) ,

• γ(v)γ(w) + γ(w)γ(v) = −2g(v, w)IdV .

The elements of V are called spinors and the actionH×V → V , (v, φ) 7→ γ(v)φ is called Clifford multiplication.

A Clifford module corresponds to a representation of the Clifford algebra Cl(H, g) on V , i.e. a homomor-
phism Cl(H, g)→ End(V ). A Clifford module is called irreducible if there are no nontrivial submodules. We
will use the following result without proof:

Proposition 2.2. If dimH = 2m then there is a unique (up to isomorphism), irreducible Clifford module (V, γ) with
dimV = 2m. If dimH = n = 2m + 1 then there exist two irreducible Clifford modules (V, γ), and (V,−γ), with
dimV = 2m.

Example 2.3 (Standard Clifford Module for R4). Consider R4 with the Euclidean metric. Then for V = C4,
we define γ as follows. Choose an ONB {e0, e1, e2, e3} for R4. Then we set

γ(ej) = Aj :=

 0 −B†j
Bj 0


where

B0 =

−1 0

0 −1

 , B1 =

i 0

0 −i

 , B2 =

0 i

i 0

 , B3 =

0 −1

1 0


To check that (C4, γ) this defines a Clifford module for (R4, gstd.), we have to check that

• γ(ej)
† = −γ(ej)

• γ(ei)γ(ej) + γ(ej)γ(ei) = −2δijIdC4 .

This was done in exercise 1.1. Clifford multiplication R4 × C4 → C4 extends to the exterior algebra, i.e.
Clifford multiplication by multivectors: Λ∗R4 × C4 → C4. For i1 < i2 < . . . < il, we define

γ(ei1 ∧ ei2 ∧ . . . ∧ eil) = γ(ei1)γ(ei2) · · · γ(eil) .

Note that this definition does not work if two of the ij ’s are the same, since γ(ei ∧ ei) = γ(0) = 0, but
γ(ei)γ(ei) = −IdV . This means that Λ∗H 6∼= Cl(H, g) as algebras even though Λ∗H ∼= Cl(H, g) as vector
spaces.

Lemma 2.4. For the standard Clifford module for R4, we have

γ(e0 ∧ e1 ∧ e2 ∧ e3) =

−Id2 0

0 Id2

 .

Hence we can split C4 = C2
+ ⊗ C2

− where the labels are opposite to the eigenspace decomposition of γ(vol),
i.e. γ(vol)|C2

±
= ∓Id2. C4 is called the space of Dirac spinors; C2

+ (respectively C2
−) is the space of positive or

left handed (respectively negative or right handed) Weyl spinors.
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Clifford multiplication has a nice relation to the Hodge star operator: Consider (Rn, geuclid) with the stan-
dard volume form, i.e. α1 ∧ α2 ∧ . . . ∧ αn, for {αi} the dual basis to {ei}, an orthonormal basis.

Definition 2.5 (Hodge Duality on Rn). Hodge duality is a map ∗ : Λk(Rn)∗ → Λn−k(Rn)∗, defined by

∗(αi1 ∧ αi2 ∧ . . . ∧ αik) = (−1)σ(αj1 ∧ αj2 ∧ . . . ∧ αjn−k)

Here, σ is the sign of the permutation that takes (i1 i2 . . . ik j1 j2 . . . jn−k) to (1 2 . . . n).

Example 2.6 (n = 4, k = 1).

∗α1 = α2 ∧ α3 ∧ α4 ,

∗α2 = −α1 ∧ α3 ∧ α4 ,

∗α3 = α1 ∧ α2 ∧ α4 ,

∗α4 = −α1 ∧ α2 ∧ α3 .

Lemma 2.7. ∗2 = Id on Λ2(R4)∗.

Proof. This simple computation is left as an exercise to the reader.

Since ∗ fixes Λ2(R4)∗, two-forms on R4 can be decomposed into a self-dual and anti self-dual part as

ω = ω+ + ω− =
1

2
(ω + ∗ω) +

1

2
(ω − ∗ω)

In other words, there is an (orthogonal) decomposition Λ2(R4)∗ = Λ+(R4)∗ ⊕ Λ−(R4)∗. If {e0, . . . e3} is an
oriented, orthonormal basis of R4, we have the following basis for Λ2

±(R4):

e0 ∧ e1 ± e2 ∧ e3

e0 ∧ e2 ∓ e1 ∧ e3

e0 ∧ e3 ± e1 ∧ e2

Hence, dim Λ2
±(R4)∗ = 3, and dim Λ2(R4)∗ = 6. We end this section with two important observations

regarding the standard Clifford module γ0 for R4.

Lemma 2.8. Under γ0, the self dual 2-forms

e0 ∧ e1 + e2 ∧ e3

e0 ∧ e2 − e1 ∧ e3

e0 ∧ e3 + e1 ∧ e2

act non-trivially on C2
+ as 2B1, 2B2 and 2B3 respectively, and are zero on C2

−. An analogous result holds for the
basis set of Λ2

−(R4)∗.

Proof. See exercise 1.2.

As a consequence, we have the following.

Lemma 2.9. γ0 induces isomorphisms

(Λ1(R4)⊗ Λ3(R4))⊗ C ∼= Hom(C2
+,C2

−)⊗Hom(C2
−,C2

+) ,

Λ2
±(R4)⊗ C ∼= End0(C2

±) ,

Λ4(R4)⊗ C ∼= C IdC2
±
,

where End0(C2
±) is the space of trace-free endomorphisms of C2

±.
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Definition 2.10 (Clifford Module Isomorphism). An isomorphism of Clifford modules (V, γ) and (V ′, γ′)
for H is a linear isometry1 f : V → V ′ such that f ◦ γ(v) = γ′(v) ◦ f for all v ∈ H .

Lemma 2.11 (Schur). Let (V, γ) be an irreducible Clifford module of H . Then every automorphism of V is of the
form f = λIdV for a constant λ ∈ S1.

Proof. Since f is an isomorphism of Clifford modules it is an isometry, hence unitary. As such, it can be
diagonalized; each eigenvalue has unit norm. The requirement on f is that it commute with γ means that γ
preserves the eigenspaces of f :

f(φ) = λiφ =⇒ γ(f(φ)) = f(γ(φ)) = λi(γ(φ)) .

Thus, each eigenspace is a submodule. Since γ is irreducible, V must be an eigenspace of f , i.e. f = λId. λ
has unit norm, hence lies in S1.

2.2 The Sheaf Cohomology Point of View

2.2.1 Čech Cohomology

Let X be a manifold, and S a sheaf over X : if G is a Lie Group, SG assigns to an open subset U ⊂ M the
continuous functions U → G. We will mostly work with the Abelian groups S1, R and Z. For now, let S be
any sheaf and consider a locally finite open covering U = {Ua}a∈A of X . We define the p-cochain groups as
the formal products

C0(U ;S) =
∏
a

S(Ua) ,

C1(U ;S) =
∏
a6=b

S(Ua ∩ Ub) ,

...

Cp(U ;S) =
∏

a0,...,ap
pairwise different

S(Ua0 ∩ Ua1 ∩ . . . ∩ Uap) .

We now define the coboundary operator δ : Cp(U ;S)→ Cp+1(U ;S), given by

(δσ)a0...ap+1
:=

p+1∏
j=0

σ
(−1)j

a0...âj ...ap+1

∣∣∣
Ua0
∩...∩Uap+1

where the hat denotes omission. We write out the coboundary operator for low values of p: If σ = {σa} ∈
C0, then (δσ)ab = σbσ

−1
a |Ua∩Ub . For σ = {σab} ∈ C1 we find (δσ)abc = σbcσ

−1
ac σab|Ua∩Ub∩Uc , and so on.

Definition 2.12 (Čech Cohomology). We call a p-cochain σ ∈ Cp a p-cocycle if δσ = 0. The set of p-cocycles
is denoted by Zp(U ;S). We say σ ∈ Cp is a p-coboundary, i.e. an element of Bp(U ;S) if σ = δτ for some
τ ∈ Cp−1. The Čech cohomology groups Ȟp(X,S) are defined as the direct limit of Ȟp(U ;S) := Zp(U ;S)

Bp(U ;S) , in
the direct limit as the cover U gets finer.

Remark 2.13. On sufficiently nice spaces (e.g. manifolds), Čech cohomology of the sheaves of locally con-
stant functions into C, R or Z is isomorphic to singular cohomology with corresponding coefficients.

2.2.2 Spinc Structures

Let X be a manifold and H → X a real, oriented vector bundle equipped with a Euclidean bundle metric.

1A map f : V → V ′ between vector spaces is called an isometry if hV ′ (f(a), f(b)) = hV (a, b) for every a, b ∈ V .
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Definition 2.14 (Spinc Structure). A Spinc-structure s on H → X is a pair (V, γ) where V → X is a complex
vector bundle with a Hermitian bundle metric, and γ a bundle homomorphism γ : H → End(V ) which is
fiberwise a standard (irreducible) Clifford module.

Using Čech cohomology, we will find that the obstruction to the existence of Spinc structures for H → X is
a class o(H) ∈ Ȟ3(X;Z) = H3(X;Z). A Spinc structure for H is constructed by by “gluing together” Spinc-
structures on the trivial bundles H|Ua (for a locally finite open covering {Ua}a∈A of X). More precisely, if
we assume H has even rank then proposition 2.2 tells us that each sa is unique up to isomorphism. For
each Uab = Ua ∩ Ub, choose an isomorphism φab : sa|Uab → sb|Uab . Of course we can assume that φaa = Id
and φab = φ−1

ba .

This gluing procedure is (globally) consistent precisely if for everyUabc = Ua∩Ub∩Uc we have φabφbc = φac.
Hence, the 2-cochain Ψabc := φabφbcφca is the identity for all a, b, c, if and only if the {sa} glue together to
a Spinc-structure for H . Since Ψabc is a fiberwise automorphism of sa|Uabc we can apply Schur’s lemma to
view it as a collection of maps Ψabc : Uabc → S1 for all a, b, c pairwise disjoint. Hence, Ψ∗∗∗ is a 2-cochain of
SS1 .

Lemma 2.15. {Ψ∗∗∗} is a 2-cocycle.

Proof. This is just a computation:

(δΨ)abcd = ΨbcdΨ
−1
acdΨabdΨ

−1
abc = φbcφcdφdbφadφdcφcaφabφbdφdaφacφcbφba = Id|Uabcd

because all the φ’s cancel pairwise.

We will not go into the technicalities, but simply claim:

Theorem 2.16. The cohomology class o(H) := [Ψ∗∗∗] ∈ Ȟ2(X;SS1) is well-defined and independent of the choices
of isomorphisms φ∗∗ and covering U .

Proof. We will not prove independence of covering—this is a standard technical thing that always needs
to be taken care of when working with sheaf cohomology. For independence of choices of isomorphisms,
consider different isomorphisms φ′ab = πabφab for πab : Uab → S1. Then Φ′abc = πabπbcπcaΨabc = (δπ)abcΨabc

hence Ψ is modified only by a coboundary.

The short exact sequence 0→ Z→ R→ S1 → 1, where the last map is the exponential map t 7→ exp(2πit),
induces a long exact sequence on the level of sheaf cohomology:

0 Ȟ0(X,SZ) . . . Ȟp(X,SR) Ȟp(X,SS1) Ȟp+1(X,SZ) . . .

Now, using the fact that the higher (meaning p > 0) sheaf cohomology groups of SR vanish (SR is a fine
sheaf), we see by exactness that Ȟp(X,SS1) ∼= Ȟp+1(X,SZ) for p > 0. Observing that continuous maps into
Z are in fact locally constant, we have Ȟp(X;SZ) = Hp(X;Z) and therefore may view o(H) as a class in
H3(X;Z).

Corollary 2.17. A Spinc-structure for H → X exists if and only if o(H) ∈ H3(X;Z) is trivial.

We turn to the question of uniqueness. For s, s′ Spinc-structures for H , we may assume (after potentially
passing to a common refined covering) that we have a covering {Ua} such that H|Ua is trivial and we have
Spinc structures s|Ua and s′|Ua . From the isomorphisms τa : sa → s′a, we construct automorphisms σab =
τ−1
a τb : Uab → S1.

Lemma 2.18.

(i) {σ∗∗} is a 1-cocycle.
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(ii) The cohomology class δ(s, s′) := [σ∗∗] ∈ Ȟ1(X,SS1) well defined.

Proof.

(i) This rolls straight out of the definition.

(ii) Again, we do not check independence of covering. If we have other isomorphisms τ ′a = µaτa for
µa : Ua → S1, we obtain a cochain {µ∗}, hence σab changes only by the coboundary δµ.

It is precisely δ(s, s′) which is the obstruction to finding an isomorphism s→ s′. We can say more:

Lemma 2.19. Given a Spinc-structure s and a class α ∈ Ȟ1(X;SS1), there exists some s′ with δ(s, s′) = α.

This is proven as follows: It is a standard fact from the theory of sheaf cohomology that Ȟ1(X,SG) is the
set of isomorphism classes of G-principal bundles. In the case of S1, the identification S1 = U(1) tells us
that this is also the set of isomorphism classes of complex line bundles (the transition maps into C∗ can be
taken to map into U(1) after picking a Hermitian metric).

Recall that Ȟ1(X;SS1) ∼= H2(X;Z) and that for a fixed complex line bundle L, the first Chern class (to
be defined in section 3.3.1) c1(L) is a class in H2(X;Z). In fact, the map Ȟ1(X;SU(1)) → H2(X;Z) is
(up to sign) given by c1: The first Chern class classifies complex line bundles up to isomorphism. Hence,
α ∈ Ȟ1(X;SS1) corresponds to a line bundle Lα with c1(Lα) = α. Hence, Vs′ = Vs ⊗ Lα is a natural
candidate for a Spinc structure such that δ(s, s′) = α. The proof is now finished by the following lemma:

Lemma 2.20. The pair (Vs′ , γs′) has a Clifford module structure, where Vs′ := Vs ⊗Lδ , i : End(Vs)→ End(Vs′) is
an isomorphism, and γs′ = i ◦ γs.

Proof. Left as an exercise to the reader.

The above discussion is summarized as follows:

Proposition 2.21. Let H → X be a real, oriented vector bundle (i.e. associated to an SO(n)-principal bundle). Then

(i) H admits a Spinc structure if and only if o(H) ∈ H3(X;Z) vanishes.

(ii) The set Spinc(H), if non-empty, is an affine space over H2(X;Z) with the action of H2(X;Z) on Spinc(H)
given by Vs 7→ Vs ⊗ Lα for α ∈ H2(X;Z).

2.2.3 Spin Structures

Definition 2.22 (Conjugate Vector Space). Let V be a complex vector space. Then the conjugate vector space
V̄ is defined as follows.

• As an Abelian group, V = V̄ .

• Scalar multiplication is given by C× V → V , (λ, v) 7→ λ̄v.

Remark 2.23. Note that Id : V → V̄ is a complex antilinear map and that EndV = End V̄ , hence if V yields
a Spinc structure for some H , then so does End V̄ .

If H is even-dimensional, this implies that V ∼= V̄ as Clifford modules:

Lemma 2.24. IfH is even-dimensional with (V, γ) the unique irreducible Clifford module, then there exists a C-linear
map J : V → V̄ (i.e. a C-antilinear map V → V ) that commutes with γ(v) for all v ∈ H .
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Definition 2.25 (Charge Conjugation). If V → X is a complex vector bundle, then there exists a complex
conjugate vector bundle V̄ → X . Since EndV ∼= End V̄ , we define charge conjugation as the map

Spinc(H) Spinc(H)

(V, γ) = s s̄ = (V̄ , γ)

By the discussion in the previous section, the following definition always makes sense:

Definition 2.26 (Characteristic Line Bundle). A complex line bundle Ls such that s = s̄⊗ Ls (unique up to
isomorphism) is called the characteristic line bundle of s.

Clearly, s ∼= s̄ if and only if Ls is trivial. In this case, we say that s arises from a Spin structure:

Definition 2.27 (Spin Structure). A Spinc-structure s together with an isomorphism J : s̄ → s is called a
Spin structure.

The following is clear:

Lemma 2.28. The Spinc-structure s induced by a Spin structure for H is unique up to isomorphism.

We will consider the existence of Spin structures in section 2.3.2. On the question of uniqueness, we only
mention the following result.

Lemma 2.29. Suppose (s, J) and (s′, J ′) are spin structures forH → X . Then the line bundleL satisfying s ∼= s′⊗L
is 2-torsion, i.e. 2c1(L) = 0 ∈ H2(X;Z).

Remark 2.30. This comes from the fact that the space of Spin structures is an affine space over the space
of real line bundles (which are 2-torsion, since they are equal to their own dual). Therefore, two Spinc

structures induced by Spin structures differ by a complexified real line bundle (in some sense, this can be
traced back to the fact that S1 is to Spinc structures what Z2 is to Spin structures).

Since the universal coefficients theorem tells us that TorH2(X;Z) ∼= TorH1(X;Z), we obtain a nice corol-
lary.

Corollary 2.31. If H1(X;Z) is torsion-free, e.g. X4 is simply connected, two Spin structures (s, J) and (s′, J ′)
have to satisfy s ∼= s′.

Remark 2.32. Note that this is an isomorphism of the underlying Spinc structures, not necessarily of Spin
structures. In fact, T 4 is an example of a manifold with several Spin structures, but they all induce the same
Spinc structure. However, Spin structure are classified by Ȟ1(X;Z2) and therefore in case e.g. π1(X) = 1,
we have a(t most a) unique Spin structure.

2.3 The Principal Bundle Point of View

2.3.1 Spinc Structures

In this section, we rephrase the existence of Spinc structures using the formalism of principal bundles. We
assume that n is even throughout. γ0 : Rn → EndCN denotes the standard Clifford module.

Definition 2.33 (Spinc(n)). The Lie group Spinc(n) is defined as the set of pairs (τ, σ) ∈ SO(n)×U(N) such
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that the following diagram commutes

Rn Rn

EndCN EndCN

τ

γ0 γ0

Adσ

where Adσ : EndCN → EndCN , µ 7→ σ ◦ µ ◦ σ−1 is the adjoint action.

Lemma 2.34. The homomorphism Spinc(n)→ SO(n), (τ, σ) 7→ τ is surjective with kernel {(Idn, S1)} ∼= S1.

Proof. Let τ ∈ SO(n) be arbitrary. Then γ0 and γ0 ◦ τ yield irreducible Clifford modules, hence are isomor-
phic (at least if n is even). Thus there must exist an isometry σ ∈ U(n) such that σ ◦ γ0(−) = γ0 ◦ τ(−) ◦ σ.
But then Adσ ◦ γ0(−) = γ0 ◦ τ(−), i.e. (τ, σ) ∈ Spinc(n).

For the kernel, assume (τ, σ) is mapped to Id ∈ SO(n). Then clearly τ = Id and we see that σ◦γ0(−)◦σ−1 =
γ0(−) hence σ commutes with γ0, i.e. is an Clifford module isomorphism. Therefore it is given by an
element λ ∈ S1. (corresponding to a diagonal matrix with λ in the diagonal entries).

Remark 2.35. One can show that (τ, σ) ∈ Spinc(n) if and only if σ : CN → CN is an isomorphism of Clifford
modules covering the isometry τ : Rn → Rn.

Lemma 2.36. Specifying a Spinc-structure for an oriented Euclidean vector bundle H → X is equivalent to specify-
ing a principal Spinc(n)-bundleQ→ X together with an isomorphismQ/S1 ∼= Fr(H), where Fr(H) is the oriented,
orthonormal frame bundle.

Proof. Suppose we are given a Spinc-structure s = (V, γ), and want to define a Spinc(n)-bundle Q→ X . We
consider the sets of pairs of orientation-preserving linear isometries

(t, s) ∈ Isom(Rn, Hx)× Isom(CN , Vx) ∼= SO(n)×U(N)

that make the following diagram commute

Hx Rn

End(Vx) End(CN )

γx γ0

t

Ad(s)

and set them equal to the fibersQx over x ∈ X . Then each fiber is diffeomorphic to Spinc(n) by construction,
and Qx/S1 3 [t, s] 7→ t is a fiberwise isomorphism to Fr(H) by lemma 2.34. For the other direction, given a
Spinc(n)-bundleQ→ X , we know we have a representation of Spinc(n) on CN given by (τ, σ) 7→ σ ∈ U(N).
This yields an associated vector bundle V → X with fiber CN . It remains to show that the standard Clifford
module γ0 induces a Clifford module γ for V ; this is left as an exercise.

Since a G-principal bundle P → X is defined by a set {γ∗∗} of transition functions, the class [γ∗∗] := [P ] ∈
H1(X;SG) corresponds to the isomorphism class of the bundle2 P . From lemma 2.34 we obtain the short
exact sequence

1 S1 Spinc(n) SO(n) 1
p

which induces a short exact sequence on the level of sheaves and thereby a long exact sequence3:

· · · Ȟ1(X;SSpinc(n)) Ȟ1(X;SSO(n)) Ȟ2(X;SS1) · · ·p δ

2This works even if G in non-Abelian. In this case, Ȟ1(X;SG) is only a set, not a group. It has a special base point corresponding
to the isomorphism class of the trivial bundle [X ×G].

3Here, we are sweeping some technicalities under the rug: The spaces should simply be interpreted as pointed sets of isomorphism
classes of G-bundles.
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where p is the projection (τ, σ) 7→ τ and δ is the connecting homomorphism. Suppose now that the SO(n)-
bundle Fr(H) has isomorphism class [H] = [γ∗∗] ∈ Ȟ1(X;SSO(n)); the above long exact sequence tells us
that a Spinc(n)-bundle Q exists if there a lift of [γ∗∗] to an element in Ȟ1(X;SSpinc(n)).

On the other hand, {φ∗∗} defined in section 2.2.2 is a 1-cochain of SSpinc(n) that covers [γ∗∗] under p. If
[φ∗∗] is a cocycle, we get a Spinc(n)-bundle Q such that p[Q] = [H] ∈ Ȟ1(X;SSO(n)). It is clear from the
definition of [Ψ∗∗∗] = o(H) ∈ Ȟ2(X;SS1) that [φ∗∗] is a cocycle if and only if δ[H] = o(H) = 0 ∈ H2(X;SS1),
in accordance with 2.17. This just means that we have a Spinc structure precisely if [H] lifts not just to a
cochain but a cocycle.

We can also recover the obstruction to uniqueness (lemma 2.18): Suppose that [Q], [Q′] are lifts of H . Then
p[Q] = p[Q′], hence p([Q]− [Q′]) = 0, so [Q]− [Q′] is in the image of j : Ȟ1(X;SS1)→ Ȟ1(X;SSpinc(n)). We
then find some δ(s, s′) ∈ Ȟ1(X;SS1) such that j(δ(s, s′)) = Q−Q′, as before.

2.3.2 Spin Structures and Stiefel-Whitney Classes

Consider (CN , γ0, J0), the standard Clifford module for Rn with its charge conjugation map.

Definition 2.37 (Spin(n)). Recall that Spinc(n) was defined as a certain set of pairs (τ, σ) ∈ SO(n)× U(N).
We define Spin(n) as the subgroup of Spinc(n) of elements (τ, σ) such that σ commutes with J0.

Lemma 2.38. The homomorphism Spin(n)→ SO(n), (τ, σ) 7→ τ is surjective with kernel {(Idn,±IdN )} ∼= Z2.

Proof. Exercises 2.1–3.

We therefore have the following short exact sequence:

1 Z2 Spin(n) SO(n) 1

Comparing this with

1 S1 Spinc(n) SO(n) 1

we obtain the new description
Spinc(n) ∼= (Spin(n)× S1)/Z2 ,

where Z2 identifies (τ, σ, λ) with (τ,−σ,−λ).

Lemma 2.39. The map (Spin(n)× S1)/Z2 → Spinc(n), [τ, σ, λ] 7→ (τ, λσ) is an isomorphism.

Proof. Exercise 2.4.

Analogous to Spinc-structures, which we saw are lifts of an real, oriented vector bundle H to a Spinc(n)-
bundle Q such that Q/S1 ∼= FrH , spin structures for H are lifts of FrH to a Spin(n)-bundle P such that
P/Z2

∼= Fr(H). As before, we have a short exact sequence

0 SZ2
SSpin(n) SSO(n) 0

and hence a long exact sequence

· · · Ȟ1(X;SSpin(n)) Ȟ1(X;SSO(n)) Ȟ2(X;SZ2
) ∼= H2(X;Z2) · · ·q δ′

and, arguing as before, we see that a lift [P ] for H exists if and only if δ′[H] = 0 ∈ H2(X;Z2).

Definition 2.40 (Second Stiefel-Whitney Class). LetH be a real, oriented vector bundle, and FrH its SO(n)-
principal frame bundle. The second Stiefel-Whitney class w2(H) of H is defined as w2(H) = δ′[H] ∈
H2(X;Z2).
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In terms of w2, the above discussion can be summarized as:

Proposition 2.41. A manifold is Spin if and only if it(s tangent bundle) has vanishing second Stiefel-Whitney class.

Let us now examine the relation between w2(H) and the obstruction class for Spinc-structures.

Lemma 2.42. The obstruction class o(H) ∈ Ȟ2(X;SS1) is the image of w2 under ι∗ : H2(X;Z2)→ Ȟ2(X;SS1).

Proof. The commutative ladder

1 S1 Spinc(n) SO(n) 1

1 Z2 Spin(n) SO(n) 1

ι ∼ =

gives rise to

Ȟ1(X,SSpinc(n)) Ȟ1(X;SSO(n)) Ȟ2(X;SS1) = H3(X;Z)

Ȟ1(X;SSpin(n)) Ȟ1(X;SSO(n)) H2(X;Z2)

δ

δ′

= ι∗

Hence ι∗δ′[H] = δ[H] = o(H) = ι∗w2[H].

Lemma 2.43. The map ι : H2(X;Z2) → Ȟ2(X;SS1) ∼= H3(X;Z) is equal to the Bockstein homomorphism
β : H2(X;Z2)→ H3(X;Z) induced by the short exact sequence

0 Z Z Z2 0
·2 mod 2

Proof. Consider the commutative ladder

0 Z R S1 0

0 Z Z Z2 0·2

= · 12

mod 2

ι

Note that square on the right commutes since exp(2πik/2) = (−1)k. On the level of cohomology we obtain

. . . 0 H2(X;SS1) H3(X;Z) 0 . . .

. . . H2(X;Z) H2(X;Z2) H3(X;Z) H3(X;Z) . . .

∼=

mod 2 β

ι∗ =

Under the identification H2(X;SS1) ∼= H3(X;Z), we see that ι∗ = β.

The upshot of this analysis can be stated as follows.

Proposition 2.44. The obstruction class o(H) = β(w2(H)) vanishes if and only if w2(H) has a lift to H2(X;Z),
that is, if w2(H) is in the image of H2(X;Z)

mod 2−−−−−→ H2(X;Z2).

Corollary 2.45. A Spinc-structure for H exists if and only if w2(H) is the mod 2 reduction of a class in H2(X;Z).
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2.4 Spin(4) and Spinc(4)

Recall that

SU(2) =


a −b̄

b ā

 ∣∣∣∣∣∣ a, b ∈ C, |a|2 + |b|2 = 1


As a real vector space, we can view R4 as

R4 ∼=


u −v̄

v ū

 ∈ Mat(2× 2,C)

∣∣∣∣∣∣ u, v ∈ C

 ∼= C2

and the action SU(2) × SU(2) × R → R, (h−, h+, x) 7→ h−xh
−1
+ defines a surjective homomorphism φ :

SU(2)× SU(2)→ SO(4) with kernel {(Id, Id), (−Id,−Id)} ∼= Z2. Hence,

Spin(4) ∼= SU(2)× SU(2) =


B+ 0

0 B−

∣∣∣∣∣∣ B+, B− ∈ SU(2)


We remark that φ : Spin(4) → SO(4) is the universal covering. To identify Spinc(n), we recall Spinc(n) ∼=
(Spin(n)×U(1))/Z2 and find

Spinc(4) = (SU(2)× SU(2)×U(1))/((1, 1, 1) ∼ (−1,−1,−1))

=


λA+ 0

0 λA−

∣∣∣∣∣∣ A+, A− ∈ SU(2); λ ∈ U(1)


Let H → X be a real rank-four Euclidean vector bundle equipped with a Spinc-structure, which we regard
as a Spinc-bundle Q. Then we can construct the associated Weyl spinor bundles S±, where the positive
and negative spinors correspond (fiberwise) to C4 = C2

+ ⊕ C2
−, as vector bundles associated to Q. The

representations used to associate S± to Q are

ρ± : Spinc(4) U(2)λA+ 0

0 λA−

 λA±

Finally, from lemma 2.39, we recall that the map (Spin(n) × S1)/Z2 → Spinc(n), [τ, σ, λ] 7→ (τ, λσ) is an
isomorphism. In particular, an element of Spinc(n) unambiguously specifies a value of λ2 and therefore the
following representation is well-defined:

χ : Spinc(4) U(1)λA+ 0

0 λA−

 λ2 = det(λA+) = det(λA−)

This representation associates the determinant line bundle L ∼= det(S+) = Λ2(S+) ∼= det(S−) = Λ2(S−) to Q.
The conjugate bundles are defined in the obvious way: S̄ = S̄+ ⊕ S̄−, associated to s via

ρ̄± : Spinc(4)→ U(2)λA+ 0

0 λA−

 7→ λA± .
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Lemma 2.46. There exists a fixed matrix M ∈ SU(2) such that MAM† = Ā for all A ∈ SU(2).

Proof. The Pauli matrices {σi} form a basis of SU(2), hence one can work out the conditions imposed by the
equations MσiM

† = σ̄i. We obtain

M =

 0 ∓1

±1 0


where we can pick either sign.

This implies that the fundamental representation of SU(2) and its complex conjugate are isomorphic. More-
over,

λ2λA± = λ|λ|2Ā± = λĀ± = M(λ̄A±)M†

so the following representations are also isomorphic: ρ± ∼= χ⊗ ρ̄± . Hence have S± ∼= S̄±⊗Ls and therefore
Ls is the characteristic line bundle.

If the spin structure changes from s to s′, the determinant bundles are related in the following way.

Lemma 2.47. Suppose s′ = s ⊗ E for a complex line bundle E. Then Ls′ = Ls ⊗ E2. Hence, c1(Ls′) = c1(Ls) +
2c1(E).

Proof. We have that s = s̄⊗ Ls, and s′ = s̄′ ⊗ Ls′ . Then since s′ = s⊗ E, we have that

s⊗ E = s̄⊗ Ē ⊗ Ls′ = s̄⊗ Ls ⊗ E .

This in turn implies that

Ls ⊗ E = Ls′ ⊗ Ē =⇒ Ls ⊗ E2 = Ls′ ⊗ Ē ⊗ E .

Now notice that Ē⊗E = E∗⊗E = End(E) (the first equality follows because E is a line bundle); the latter
bundle is in fact trivial for every line bundle E (a global section is given by IdE). Hence, Ls′ = Ls⊗E2.

As a corollary, we see that c1(Ls) mod 2 ∈ H1(X;Z2) does not depend on the choice of s. We also note the
following, without proof:

Proposition 2.48. c1(Ls) ≡ w2(H) mod 2.

2.5 Spinc-Connections and Dirac Operators

Let H → X be a real, oriented vector bundle equipped with a Euclidean metric g and a metric-compatible
connection ∇B . Assume H admits a Spinc-structure V → X with Hermitian metric h (we will indicate
Clifford multiplication by a dot).

Definition 2.49 (Spinc-connection). A Spinc-connection ∇A on V is a covariant derivative which is

(i) Hermitian, i.e. LY h(Φ,Ψ) = h(∇AY Φ,Ψ) + h(Φ,∇AY Ψ) for every Y ∈ X(M) and Φ,Ψ ∈ Γ(V ).

(ii) Compatible with ∇B and Clifford multiplication in the sense that for every Y ∈ X(M),Φ ∈ Γ(V ) and
T ∈ Γ(M) we have

∇AY (T · Φ) = (∇BY T ) · Φ + T · (∇AY Φ)

In case the first term vanishes, we have an obvious simplification:

Lemma 2.50. Let ∇A be a Spinc-connection and T a parallel section of H with respect to ∇B along the flow of a
vector field Y . Then ∇AY (T · Φ) = T · ∇AY Φ.

This is sometimes useful when verifying identities pointwise (where one may choose a local frame of par-
allel sections).
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2.5.1 The Dirac Operator on Rn

Loosely speaking, the Dirac operator is the “square root” of the Laplace operator. Let us try to formalize
this idea: for a function φ : Rn → CN , the Dirac operator D can be written in a basis as

DΦ =

n∑
i=1

Ai
∂Φ

∂xi

where the Ai’s are constant, complex N ×N matrices. The Laplace operator on Rn is given by

∆Φ = −
n∑
i=1

IdN
∂2Φ

∂x2
i

Imposing D2 = ∆, we obtain

D2Φ =

n∑
j=1

Aj
∂

∂xj
DΦ =

n∑
j=1

Aj
∂

∂xj

n∑
i=1

Ai
∂Φ

∂xi

=

n∑
i,j=1

AjAi
∂2Φ

∂xi∂xj

!
= −

n∑
i=1

IdN
∂2Φ

∂x2
i

which is equivalent to
A2
i = −IdN and AjAi +AiAj = 0 ∀ i 6= j (2.1)

We also want D to be formally self-adjoint: For Φ, Ψ : Rn → Cn, we consider the L2-scalar product

〈Φ,Ψ〉 =

∫
Rn

dnxΦ†Ψ

Now, we require 〈DΦ,Ψ〉 = 〈Φ, DΨ〉:

Lemma 2.51. D is formally self-adjoint if and only if A†i = −Ai (i.e. Ai is skew-adjoint).

Proof. This is a simple computation.

〈DΦ,Ψ〉 =

∫
Rn

dnx
∑
i

∂Φ†

∂xi
A†iΨ

while on the other hand, integration by parts shows that

〈Φ, DΨ〉 =

∫
Rn

dnxΦ†
∑
i

Ai
∂Ψ†

∂xi
= −

∫
Rn

dnx

n∑
i=1

∂Φ†

∂xi
AiΨ

Hence, 〈DΦ,Ψ〉 = 〈ΦDΨ〉 if and only if A†i = −Ai.

Equation (2.1) together with the above lemma indicate that A†iAi = IdN for each i, i.e. the Ai’s are unitary.

2.5.2 The Dirac Operator on a Spinor Bundle

We specialize to the following set-up: Let H = TX → X , with a Riemannian metric g. Let ∇B = ∇,
be the unique torsion-free4, metric-compatible connection (called the Levi-Cività connection). Let s be a
Spinc-structure on X .

4Recall that this condition means that for Y , Z ∈ X(X),∇Y Z −∇ZY = [Y, Z].
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Definition 2.52 (Dirac Operator). If ∇A is a Spinc-connection on V , the Dirac operator DA : Γ(V ) → Γ(V )
is defined as the composition

DA : Γ(V ) Γ(T ∗X ⊗ V ) Γ(TX ⊗ V ) Γ(V )
∇A g γeval

where γeval denotes γ composed with Clifford multiplication (evaluation).

Lemma 2.53. Let {e1, e2, . . . , en} be an orthonormal basis of (TpX, gp). Then

DAΦ =

n∑
i=1

ei · ∇AeiΦ

Remark 2.54. In physics, one typically writes DΦ = iγµ∂µΦ. Clearly, γµ corresponds to Clifford multipli-
cation by eµ while ∂µ corresponds to∇Aeµ . The factor i arises from the different convention {γµ, γν} = 2ηµν .

Proof of Lemma. Let {ωi} be the dual basis to {ei}. Then the covariant derivative in coordinates is given by

∇AY Φ =

n∑
i=1

Yi∇AeiΦ =
∑
i

ωi(Y )∇AeiΦ =

(∑
i

ωi ⊗∇AeiΦ
)

(Y )

Hence, the Dirac operator is given by

DAΦ = γeval ◦ g ◦ ∇AΦ = γeval ◦ g

(
n∑
i=1

ωi ⊗∇AeiΦ

)
= γeval

(
n∑
i=1

ei ⊗∇AeiΦ

)

=

n∑
i=1

ei · ∇AeiΦ

Definition 2.55 (Hermitian Scalar Product of Spinors). In the above setting, suppose (X, g) is closed. We
define a Hermitian scalar product on the space of smooth sections Γ(V ) given by

〈Φ,Ψ〉 =

∫
X

h(Φ,Ψ)volg

where h is the Hermitian scalar product on the spinor bundle.

Proposition 2.56. With respect to the Hermitian scalar product, DA is formally self-adjoint.

The proof of this proposition relies on the following result:

Lemma 2.57. For η the 1-form defined by η(X) = h(X · Φ,Ψ), the following holds:

h(DAΦ,Ψ)− h(Φ, DAΨ) = ∗ d ∗ η

Proof. We prove this pointwise. Let (ej) be a local frame of V around p ∈ X such that (∇ei)p = 0, i.e. the ei
are parallel in p. Using that ∇A is a Spinc connection, we have (in p):

h(DAΦ,Ψ)− h(Φ, DAΨ) =
∑
i

(
h
(
∇ei(ei · Φ),Ψ

)
− h
(
Φ, ei · ∇AeiΨ

))
=
∑
i

(
h
(
∇ei(ei · Φ),Ψ

)
+ h
(
ei · Φ,∇AeiΨ

))
=
∑
i

Leih(ei · Φ,Ψ) =
∑
i

Leiη(ei) = ∗ d ∗ η
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where we used that Clifford multiplication is skew-Hermitian to pass to the second line; the last step is
justified by exercise 3.3.

Proof of Proposition. This is now an easy application of Stokes’ theorem:

〈DAΦ,Ψ〉 − 〈DAΦ,Ψ〉 =

∫
X

∗ d ∗ η volg =

∫
X

d ∗ η = 0

Example 2.58 (DA on X4). Let us consider the case where X4 is an oriented 4-manifold, H = TX and
V = V+ ⊕ V− the Clifford module defined by a Spinc structure on X .

Lemma 2.59. Every Spinc-connection on V preserves V±.

Proof. The volume form is always parallel with respect to the Levi-Cività connection ∇. Recall that V± are
the ∓-eigenspaces of V under Clifford multiplication by volg . Because volg is parallel, a Spinc-connection
must commute with this Clifford multiplication. Thus, we obtain

∓∇AY Φ± = ∇AY (volg · Φ±) = volg · ∇AY Φ±

hence∇AY Φ± ∈ Γ(V±).

Lemma 2.60. Clifford multiplication with a tangent vector exchanges V+ and V−

Proof. This follows from exercise 1.2, where we showed (Λ1R4⊕Λ3R4)⊗C ∼= End(C2
+,C2

−)⊕End(C2
−,C2

+).

Therefore, the Dirac operator decomposes as

DAΦ =

 0 D−A

D+
A 0

Φ+

Φ−


where D±A : Γ(V±)→ Γ(V∓).

2.5.3 The Existence of Spinc-Connections

In this section, we think of Spinc-structures as Spinc(n)-principal bundles. Consider the SO(n)-principal
bundle FrH and recall the bijective correspondence between connection 1-forms on a principal bundle and
covariant derivatives on associated bundles. By this correspondence, the covariant derivative∇B defines a
principal connection B on Fr(H), i.e. B ∈ Ω1(Fr(H), so(n)) = Γ(T ∗ Fr(H)⊗ so(n)) such that

(i) r∗gB = Ad(g−1) ◦B for every g ∈ SO(n), where rg is right-multiplication by g

(ii) B(W̃ ) = W for all W ∈ so(n), W̃ the fundamental vector field defined by W ∈ so(n)

Now let A ∈ Ω1(Q, spinc(n)) be a connection on the Spinc(n)-bundle Q→ X ; it defines a Hermitian covari-
ant derivative∇A on V → X , where V → X is the vector bundle associated toQ→ X via the representation

ρ : Spinc(n) U(N)

(τ, σ) σ

Let % : Spinc(n) → SO(n), (τ, σ) 7→ τ be the surjective homomorphism defined in lemma 2.34. We denote
the induced Lie algebra homomorphisms by ρ∗ and %∗.

We wish to answer the following question: In the formalism of principal bundles, what does is it mean for
A that∇A is a Spinc-connection? Which conditions are imposed on A? We have the following results.
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Lemma 2.61. For Y ∈ spinc(n),

%∗(Y )(t · φ) = ρ∗(Y )t · φ+ t · %∗(Y )φ

for all t ∈ Rn, φ ∈ CN .

Proof. By the definition of Spinc(n), g ∈ Spinc(n) satisfies the equation ρ(g)(t · φ) = (%(g)(t)) · (ρ(g)φ).
Differentiating this, we obtain the result we are looking for.

Proposition 2.62. Let π : Q → FrH be the bundle map that identifies Q/S1 ∼= FrH . A Hermitian covariant
derivative ∇A is a Spinc-connection if and only if the following diagram commutes:

TQ spinc(n)

T Fr(H) so(n)

A

Dπ %∗

B

Proof. Let s : U → Q be a local section on an open set U ⊂ X . It induces a section π ◦ s of FrH . We have the
associated bundles V = Q ×ρ CN and H = FrH ×std Rn. Let Φ = [s, φ] ∈ Γ(V,U), T = [t, π ◦ s] ∈ Γ(H,U)
and Y ∈ X(X). We have the covariant derivatives

∇AY Φ = [s, LY φ+ ρ∗(s
∗A(Y ))φ] ∇BY T = [π ◦ s, LY t+ ((π ◦ s)∗B(Y ))t]

omitting the [s, . . . ] and [π ◦ s, . . . ] for simplicity, we have:

∇AY (T · φ) = LY (t · φ) + ρ∗(s
∗A(Y ))(t · φ)

(∇BY T ) · φ = (LY t) · φ+ ((π ◦ s)∗B(Y )t) · φ
T · ∇AY φ = t · LY φ+ t · ρ∗(s∗A(Y ))φ

∇A is a Spinc-connection precisely if ∇AY (T · Φ) + T · ∇AY Φ. Setting s∗A(Y ) = a, it is clear that all we need
to show is

ρ∗(a)(t · φ) = ((π ◦ s)∗B(Y )t) · φ+ t · ρ∗(a)φ

Using the previous lemma, this is equivalent to requiring that (π ◦ s)∗B(Y ) = %∗(a). But this means exactly
that s∗ ◦ π∗B = B ◦Dπ ◦Ds = %∗ ◦ A ◦Ds, i.e. B ◦Dπ = %∗ ◦ A, at least on the image of Ds, but that is all
we need for it to be true for the covariant derivative.

Corollary 2.63. ∇A is a Spinc-connection compatible with ∇B if and only if ∇B is associated to the principal
connection A on Q via the representation % : Spinc(n) → SO(n). More explicitly, for T = [π ◦ s, t] ∈ Γ(H), where
s : U ⊂ X → Q is a local section and t : U → Rn, we can write

∇BY T = [π ◦ s, LY t+ %∗(s
∗A(Y ))t]

Let L := Ls denote the characteristic line bundle associated to Q via the homomorphism

χ : Spinc(n)→ U(1)

[τ, σ, λ] 7→ λ2

Then χ∗ : spinc(n) → u(1) is a Lie algebra homomorphism. We further define L as the U(1)-principal
bundle corresponding to L, i.e. L is the complex frame bundle FrC(L) of L.

Proposition 2.64. A connection A on Q induces a connection A on L such that the following diagram, where
c : Q→ L is a bundle map, commutes.

TQ spinc(n)

TL u(1)

A

Dc χ∗

A
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Since Spinc(n) ∼= Spin(n) × U(1)/Z2, the Lie algebra is given by spinc(n) ∼= spin(n) ⊕ u(1) ∼= so(n) ⊕ u(1).
The isomorphism spinc(n)→ so(n)⊕ u(1) is given by (ρ× χ)∗. This allows us to construct a connection on
Q from connections on FrH and L, bringing us to the main result of this section:

Theorem 2.65. Let B be a principal SO(n)-connection on Fr(H), and A a principal U(1)-connection on L. Then
there exists a unique principal Spinc(n)-connection A on Q such that the following diagrams commute.

TQ spinc(n)

T Fr(H) so(n)

A

Dπ %∗

B

TQ spinc(n)

TL u(1)

A

Dc χ∗

A

Proof. Let us denote the SO(n)×U(1)-bundle onX with fiber FrHx×Lx by FrH×̃L. Consider a connection
B ⊕ A on this bundle and the bundle map π×̃c : Q → FrH×̃L. This is in fact a 2:1 covering, but we only
need it to be a local diffeomorphism. This is guaranteed by the fact that we have an isomorphism (ρ× χ)∗,
which implies that D(π×̃c) is an isomorphism as a map between tangent spaces between each point, i.e.
on the fibers of the tangent bundles. This allows us to define A to be the map that makes the following
diagram commute:

TQ spinc(n)

T (FrH×̃L) so(n)⊕ u(1)

A

D(π×̃c)iso on fibers (ρ×χ)∗∼=

B⊕A

This uniquely defines A because the vertical maps are isomorphisms (on fibers).

Corollary 2.66. The choice of a metric connection ∇B on H and a Hermitian connection ∇A on L determines a
unique Spinc-connection∇A on V .
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3 Some Background on Four-Manifolds

3.1 Classification Results in Dimensions One Through Three

Closed, connected, oriented, smooth (CCOS) manifolds form a very natural class of spaces and understand-
ing and classifying them has been an important area of research for hundreds of years. Here, we give a very
brief overview of some of the most important results for low-dimensional manifolds (that is, manifolds of
dimension n ≤ 4).

In one dimension, the only closed manifold is the circle: Every one-dimensional CCOS manifold is diffeo-
morphic to S1. The two-dimensional case is already considerably more interesting: Let M be CCOS and
of dimension two. Then M ∼= Σg , for some unique g ≥ 0, where g indicates the genus of the surface. The
sphere S2 has g = 0, the torus T 2 has genus g = 1 and for larger g, we have:

Σg = T 2# . . .#T 2︸ ︷︷ ︸
g copies

We can equivalently classify (oriented) surfaces by their first Betti number b1(M) or Euler characteristic χ
via the relations g = b1(Σg)/2 and χ(Σg) = 2− 2g.

For n = 3, things get much more difficult.

Definition 3.1 (Prime Manifold). A manifold M is prime if M ∼= M1#M2 implies that one of the Mi is a
sphere. Loosely speaking, this means that M has no non-trivial decomposition.

Prime manifolds derive their importance from the following theorem, which we will not prove:

Theorem 3.2 (Kneser, Milnor). Every M3 has an essentially unique decomposition M = M1# . . .#Mk with the
property that each Mi is prime.

Observe that in dimension two, the classification of CCOS manifolds has a nice connection to constant
curvature metrics: There is a metric of constant (sectional) curvature +1 on S2, 0 on T 2 and −1 on Σg≥2.
Thurston envisioned something similar for 3-manifolds: Thurston’s famous geometrization conjecture (now
a theorem, due to Perelman) says that each prime Mi can be cast into “geometric” pieces, carrying one of
the following eight geometries:

S3, R3, H3, S2 × R, H2 × R, Nil3, Sol3, S̃L2(R)

A corollary is the following celebrated theorem:

Theorem 3.3 (Perelman). If M3 is closed, connected and simply connected, M3 ∼= S3.

The proof establishes that M3 must admit a metric of constant positive curvature and hence it must be a
so-called space form, a quotient of S3. Since π1(M3) = 1 by assumption, one concludes that M3 ∼= S3.

One general theme in the understanding of 3-manifolds can be summarized in the following slogan or
“meta-theorem”: “3-manifolds are controlled by the fundamental group”.

3.2 Dimension Four

3.2.1 The Intersection Form

It turns out that four dimensions is very different from three. We start by listing some basic examples of
4-dimensional manifolds

(i) S4; CP2; T 4 and other flat 4-manifolds, i.e. quotients of R4 by discrete, cocompact group actions:
These are classified by π1;
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(ii) M3 × S1, and more generally, S1-bundles over M3, and M3 bundles over S1;

(iii) Σg × Σh, and more generally, Σh-bundles over Σg ;

(iv) Iterated connected sums of all of the above.

These examples already show that the fundamental group does not constrain 4-manifolds much. It turns
out that in dimension four, (co)homological invariants are more important. One of them is particularly
powerful:

Definition 3.4 (Intersection Form). Given M4, CCOS, we define the intersection form as follows5

QM : H2(M ;Z)×H2(M ;Z) Z

(α, β) 〈α ^ β, [M ]〉

If one works with R as coefficient ring, i.e. uses de Rham cohomology, the intersection form is given by
QM (α, β) =

∫
M
α ∧ β. QM is bilinear and symmetric. By Poincaré duality6, QM induces a non-degenerate

symmetric bilinear form
QM : H2(M ;Z)/Tor×H2(M ;Z)/Tor→ Z

Remark 3.5.

(i) Using the universal coefficients theorem and Poincaré duality, it is not hard to show that the torsion in
H2(M ;Z) is the same as inH2(M ;Z), H1(M ;Z), andH3(M ;Z). The other homology and cohomology
groups (H0(M ;Z), H3(M ;Z), , H4(M ;Z), H1(M ;Z), and H4(M ;Z)) are all torsion-free. In particular,
if M4 is simply connected, there is no torsion at all in (co)homology. Therefore, the intersection form
contains all the information about (co)homology in this case, since H1 ∼= H1

∼= H3 ∼= H3 is trivial.

(ii) The name intersection form comes from the fact that the Poincaré dual pairing H2(M ;Z)⊗H2(M ;Z)→
Z, (a, b) 7→ a · b can be realized by counting intersection points of representing cycles. We will describe
this in more detail soon.

Definition 3.6. A class [c] ∈ H2(M ;Z) is realized by a surface Σ if there is a continuous map f : Σ→M such
that f∗[Σ] = [c].

Lemma 3.7. IfM is smooth and simply connected, then every class [c] ∈ H2(M ;Z) is realized by a smooth immersed
sphere, and also by a smoothly embedded surface (possibly of higher genus).

Proof. If π1(M) = 1, the Hurewicz theorem tells us that π2(M) surjects onto H2(M ;Z). Hence, for every
[c] ∈ H2(M ;Z), there is a continuous f : S2 →M such that f∗[S2] = [c]. SinceM is smooth, every homotopy
class of maps from S2 →M contains smooth maps so we may even take f smooth. We may homotope it to
an immersion since dimS2 < dimM4.

If f : Σ2 → M is a smooth immersion, then using transversality it can be taken to be an embedding
away from a finite number of transverse double points. Near such a double point, the surface looks like
(C × {0}) ∪ ({0} × C) in C2. We remove small balls (at the origins) from the copies of C, and replace them
by an annulus S1 × [0, 1] that connects the boundary circles. This may change the genus, but resolves the
intersection without altering the homology class (cf. exercise 4.2). Thus, we eventually obtain an embedded
surface.

Let Σ1, Σ2 ⊂ M4 be smoothly embedded surfaces. We may assume (after homotoping “infinitesimally”)
that Σ1 t Σ2, meaning that they only intersect transversely in a finite number of points. If p ∈ Σ1∩Σ2, then

5[M ] is the fundamental class associated to M , which corresponds to the positive generator of the homology group Hn(M ;Z) ∼= Z.
6It states that if M is an n-dimensional oriented closed manifold, then the kth cohomology group of M is isomorphic to the (n−k)th

homology group of M, for all integers k, i.e. Hk(M) ∼= Hn−k(M).
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TpΣ1 ⊕ TpΣ2 = TpM for dimensional reasons (combined with transversality); we assign ±1 to p according
to whether the orientations of Σ1 and Σ2 induce the given orientation on TpM or not. Then we define

Σ1 · Σ2 :=
∑

p∈Σ1∩Σ2

±1

This yields the Poincaré dual intersection pairing, which we will also denote by QM . Since QM is non-
degenerate, symmetric, bilinear on H2(M ;Z)/Tor, it is represented by a symmetric integer matrix with
respect to a basis for second cohomology. Poincaré duality implies that it is unimodular, i.e. the represent-
ing matrix has determinant ±1.

Example 3.8.

(i) QS4 is trivial because H2(S4;Z) = 0.

(ii) M = S2 × S2. Take S2 × {p} and {p} × S2 as a basis for H2(S2 × S2;Z). These spheres do not self-
intersect transversely (given two copies of e.g. S2×{p}, homotope one to S2×{p} to obtain an empty
intersection). However, they intersect each other in {p} × {p′}: The standard orientation on S2 × S2

makes this intersection count as +1. Hence, we find:

QS2×S2 =

0 1

1 0

 =: H

a so-called “hyperbolic pair”.

(iii) M = CP2. Then H2(CP2;Z) = Z is generated by
[
CP1

]
. With the standard orientation on CP2, the

intersection form QCP2 = (1).

(iv) If M has a given orientation, then M̄ denotes the same manifold with the opposite orientation. Its
intersection form is given by QM̄ = −QM .

(v) An application of the Mayer-Vietoris sequence shows that QM1#M2 = QM1 ⊕QM2 =

QM1
0

0 QM2

.

(vi) From the three preceding statements, we see that p CP2# q CP 2 = CP2# . . .CP2#CP2# . . .CP2,
the connected sum of p copies of CP2 with q copies of CP2, has intersection form p(1) ⊕ q(−1) :=
diag(1, . . . , 1,−1, . . . ,−1) with p times 1 and q times −1 on the diagonal.

3.2.2 Related Invariants and some Classification Results

The following properties of QM follow from basic linear algebra:

(i) rankQM = b2(M).

(ii) Considering QM on H2(M ;Z)⊗R = H2(M ;R), we can diagonalize QM over R Indeed, over R, QM is
equal to some p(1) ⊕ q(−1) since symmetric, bilinear forms on R-vector spaces are classified by their
rank and signature.

Definition 3.9 (Signature of a 4-Manifold). We define σ(M) = σ(QM ⊗ R) = p− q as the signature of M .

It is conventional to define b+2 (M) = p, b−2 (M) = q. We list some basic properties of the signature:

(i) σ
(
M̄
)

= −σ(M).

(ii) σ(M) is an oriented homotopy invariant (it is defined using only (co)homology and an orientation).
Hence, if σ(M) 6= 0, there is no orientation-preserving homotopy equivalence f : M → M̄ . In other
words, M does not admit an orientation-reversing homotopy equivalence f : M →M .
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(iii) The Euler characteristic of M is given by

χ(M) =

4∑
i=0

bi(M) = b0(M)− b1(M) + b2(M)− b3(M) + b4(M)

= 2− 2b1(M) + b+2 (M) + b−2 (M)

≡ b+2 (M)− b−2 (M) = σ(M) mod 2

where we used the fact that M is connected and Poincaré duality in passing to the second line. Since
χ(M) ≡ σ(M) mod 2, an odd Euler characteristic shows that M does not admit an orientation-
reversing self-homotopy equivalence.

Example 3.10.

(i) Every intersection form p(1)⊕ q(−1) is realized by p CP2#q ¯CP2.

(ii) QS2×S2 =

0 1

1 0

 = H ∼=R

1 0

0 −1

. Hence, σ(S2 × S2) = 0. An explicit orientation-reversing

self-diffeomorphism of S2 × S2 is given by (x, y) 7→ (x,−y) (regarding S2 ⊂ R3 as the unit sphere).

(iii) Since σ(CP2) = 1, it admits no orientation-reversing self-homotopy equivalence.

Definition 3.11. We say that QM is even if QM (α, α) ≡ 0 mod 2 for all α ∈ H2(M ;Z). Otherwise, we call
QM odd.

Example 3.12.

(i) QS2×S2 = H is even since H(aα1 + bα2, aα1 + bα2) = 2abH(α1, α2) ≡ 0 mod 2, where the αi’s are the
standard basis elements. This shows that S2×S2 (with either orientation) is not homotopy equivalent
to CP2#CP2.

(ii) Recall the exceptional Lie algebra E8 with Dynkin diagram corresponding to the following matrix:

−2 1 0 0 0 0 0 0

1 −2 1 0 0 0 0 0

0 1 −2 1 0 0 0 0

0 0 1 −2 1 0 0 0

0 0 0 1 −2 1 0 1

0 0 0 0 1 −2 1 0

0 0 0 0 0 1 −2 0

0 0 0 0 1 0 0 −2


It is a unimodular, symmetric, even and negative-definite matrix. We will denote this matrix by E8.
Clearly, σ(E8) = −8. It plays an important role in the following fundamental theorem, which we will
not prove.

Theorem 3.13 (Hasse-Minkowski Classification). Every unimodular, indefinite, symmetric bilinear form is equiv-
alent over Z to either b+2 (1)⊕ b−2 (−1) (where b+2 , b−2 ≥ 1) if the form is odd, or aH ⊕ bE8 if the form is even, where
b ∈ Z, a ∈ Z and a ≥ 1 (since H ∼=Z −H).

In the latter case we have b+2 = a, b−2 = a+ 8b if b ≥ 0 or, if b ≤ 0, b+2 = a− 8b, b−2 = a. This shows:
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Remark 3.14. If QM is indefinite and even, then σ(M) = −8b ≡ 0 mod 8.

If QM is definite, the situation is considerably more complicated. However, for smooth manifolds there is a
celebrated theorem, due to Donaldson, which we will prove later on using Seiberg-Witten theory:

Theorem 3.15 (Donaldson). If M is a CCOS 4-manifold with QM definite, then QM is diagonal over Z.

Corollary 3.16. Because of unimodularity, QM has only +1’s or −1’s on the diagonal in this case. In particular,
even intersection forms do not occur in this setting.

This tells us that, in the smooth category, definite intersection forms are extremely constrained. For indefi-
nite forms, a major conjecture remains:

Conjecture 3.17 (The 11/8-Conjecture). If M is a CCOS, simply connected 4-manifold with QM even, then

b2(M) ≥ 11

8
|σ(M)|

Remark 3.18. The Hasse-Minkowski classification shows that the only such intersection forms are aH⊕bE8

where a ≥ 1 and b ∈ Z. We obtain the equivalent condition

2a+ 8|b| ≥ 11

8
8|b| ⇐⇒ 2a ≥ 3|b|

Another way of stating this conjecture is that smooth structures on M do not exist if b2(M) < (11/8)|σ(M)|.
The weaker inequality b2(M) ≥ 10/8|σ(M)| has already been proved (by Furuta, using Seiberg-Witten
theory). The 11/8 conjecture is sharp, at least for a = 3, as we will see when we discuss K3 surfaces.

Remark 3.19. There is a CCOS 4-manifold M with π1(M) = Z2 and QM = H ⊕ E8, i.e. the condition that
M is simply connected is necessary.

Example 3.20 (S2-bundles over S2). One natural question to ask is whether there are non-trivial oriented
S2-bundles over S2. Since a disk is contractible, any bundle over S2 is the result of gluing two trivial
bundles (one on each hemisphere) over a subset that deformation retracts onto the equator by a transition
map f : S1 → G, where G is the structure group of the bundle. In our case G = Diff+(S2), i.e. the
orientation-preserving diffeomorphisms of S2. Since we are interested in maps f up to homotopy, we can
use the fact that Diff+(S2) ' SO(3) (proven by Smale). Therefore, π1(Diff+(S2)) = π1(SO(3)) = Z2, because
SO(3) ∼= RP3. We can thus draw the following conclusions.

• There are at most 2 different S2-bundles over S2 up to diffeomorphism.

• All S2-bundles can be taken to have structure group SO(3). Every S2-bundle is a unit sphere bundle
in a rank 3 vector bundle.

Now let E → S2 be the oriented rank 2 vector bundle whose Euler class e (see 3.24) is the generator of
H2(S2;Z). Let V = E ⊕ R. Choose a metric on E and define M := S(V ) the unit sphere bundle in the
induced metric on V . The intersection M ∩ (S2 × R) consists of two copies of S2, embedded as sections of
the S2-bundle M → S2. On the other hand, the intersection M ∩ E is a circle bundle over S2 with Euler
class the generator of H2(S2;Z). Since the Euler class classifies such bundle and this description matches
the Hopf bundle S1 → S3 → S2, we conclude that M ∩ E ∼= S3, and the circle bundle S3 → S2 is the Hopf
fibration.

M is obtained by doubling the unit disc bundle inE, i.e. gluing two copies by their boundaries. As a double,
M admits an orientation-reversing diffeomorphism and therefore σ(M) = 0. In fact, the disk bundles are
precisely CP2 \ B4—thinking of the latter space in terms of its standard cell decomposition, with the the
inner half of the 4-dimensional cell removed (recall that the gluing map of the 4-cell is the Hopf fibration).
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Therefore,M ∼= D(CP2\B4) = CP2#CP2 and it has intersection formQM = (1)⊕(−1) 6∼=Z H . In particular,
it is not homotopy equivalent to S2 × S2. This bundle represents the non-trivial S2-bundle over S2. Notice
that the parity of the intersection form distinguishes between the this bundle and the trivial one.

We close this section with two fundamental results, both of which highlight the central role of the intersec-
tion form in 4-manifold theory.

Theorem 3.21 (Whitehead-Milnor). Two CCOS, simply connected 4-manifolds are homotopy equivalent if and
only if their intersection forms are equivalent over Z.

Proof. If M1 ' M2, their intersection forms agree by homotopy invariance of (co)homoloy. The converse is
more difficult. A first observation (proven using e.g. Morse theory) is that every CCOS, simply connected
4-manifold M4 has the homotopy type of a finite CW complex. Let M0 = M \ e4 be the complement of a
4-cell. Then

Hk(M0) =


Z k = 0

0 k = 1,≥ 3

Zm k = 2

where m = b2(M) since there is no torsion and the 3-skeleton of M and M0 coincide. Because M is simply
connected, π2(M) surjects ontoH2(M0) by Hurewicz’ theorem. Pick a basis {ej} forH2(M0) and continuous
maps fj : S2

j →M0 such that (fj)∗[S
2
j ] = ej . After homotoping some of the fj ’s to ensure they all hit a fixed

base point, they yield a map

f :

m∨
j=1

S2 →M0

which induces an isomorphism on homology in every degree. It is a theorem due to Whitehead that such a
map between simply connected CW complexes is a homotopy equivalence. We now have M '

∨
j S

2
j ∪g e4,

where g : S3 →
∨
j S

2
j is the gluing map of the 4-cell. Therefore, the homotopy type of M is determined by

b2(M) and the homotopy class of g. We start by considering some low values of m case-by-case:

(i) The case m = 0 is easy: g must be constant, hence M ' S4.

(ii) If m = 1, we have a map g : S3 → S2 hence [g] ∈ π3(S2): To figure out π3(S2). We will do this via the
Thom-Pontryagin construction. First, we will try to find a nice representative of [g]. Think of S2, S3 as
embedded in R3,R4. For every continuous map g : S3 → S2, we can find a smooth map g̃ : S3 → R3

such that ‖g̃(x) − g(x)‖ < ε for arbitrarily small ε > 0. Making ε small enough, we see that g̃ avoids
0 ∈ R3. By “pushing radially”, we see that g̃ is smoothly homotopic to a map into S2; call the resulting
map G.

NowG can be homotoped to g outside of the origin of R3: Because the pointsG(x) and g(x) are ε-close,
the straight line connecting them never passes through the origin. Pushing this straight line into the
sphere, we obtain a homotopy through maps into S2 between g and G, showing that G is a smooth
representative of [g].

Now, we are ready to sketch the Pontryagin-Thom construction: Let p ∈ S2 be a regular value of g,
which we assume to be smooth from now on. Then g−1(p) is a smooth, compact one-dimensional
submanifold of S3, hence a union of circles. For each connected component, the normal bundle is a
rank 2 oriented bundle which can be thought of as a tubular neighborhood of the circle. For every
q ∈ g−1(p), Dqg induces an isomorphism TqS

3/Tq(g
−1(p)) ∼= TpS

2. This defines a trivialization of the
normal bundle ν(g−1(p)) in S3 (whose fibers are exactly TqS3/Tq(g

−1(p))), since each fiber is identified
with the same vector space TpS2. g−1(p) is called a framed submanifold (illustrated in figure 1).
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g

Figure 1: A framed circle in S3

We would like to extract data that is independent of our initial choice of regular value. Pick a different
regular value p′ and connect the two by a path. The preimage of the path will, for a generic path, be
an embedded surface (a bordism between g−1(p) and g−1(p′)) and the frame is also transferred, i.e.
g−1(p) changes through a framed bordism (illustrated in figure 2). Thus, the framed bordism class is
independent of our choice of regular value.

Figure 2: Picking two different regular values results in a framed cobordism between the preimages.

Now we consider homotopies of g: Let H : S3× I → S2 be a homotopy from g = H0 to h = H1, which
we can assume to be smooth (arguing as before). Pick a regular value p of g, h and H . Then H−1(p)
is a surface in S3 × I which projects under the canonical map S3 × I � S3 to a framed cobordism
between g−1(p) and h−1(p). Thus, the framed submanifold g−1(p) only depends on [g] up to framed
bordism.

The next step is to reverse the process, i.e. determine [g] from a framed bordism class of framed
submanifolds of S3. Given a framed 1-dimensional submanifold K ⊂ S3 (which is a link in general),
we identify an open tubular neighborhood T ⊃ K with K × D2, using the framing. Now define
g : S3 → S2 as follows: Let x ∈ T ∼= K ×D2 and set g(x) = proj2(x) ∈ D2 = S2 \ {−p}. For any x /∈ T ,
set g(x) = −p ∈ S2. Then the preimage of p is K, g is smooth near K (and can be homotoped to be
smooth everywhere), p is a regular value and the induced framing is the right one. This establishes a
bijection

π3(S2)←→ framed bordism classes of 1-dimensional submanifolds of S3

and completes the Thom-Pontryagin construction. It is a fact, which we do not prove, that every
equivalence class can be represented by a connected, unknotted S1 ⊂ S3. All bordism classes are
therefore only distinguished by framings. Two different framings of S1 ⊂ S3 differ by a map ρ : S1 →
SO(2)—identify the fibers of ν(S1), i.e. disks, over one point and then track how the two framings
differ by a rotation at each point. But of course SO(2) ∼= S1, hence π3(S2) ∼= π1(S1) = Z. This finally
allows us to discuss the possible homotopy types of M for b2(M) = 1:

a) g ' const. Then M ' S2 ∨ S4 but this cannot be the homotopy type of any closed, oriented
manifold: It does not satisfy Poincaré duality since the intersection form is degenerate.
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b) If g corresponds to a generator of π3(S2), the attaching map is the Hopf fibration. But this yields
the standard description of the CW structure of CP2, i.e. M ' CP2 or CP2.

c) If [g] = λ ∈ Z with |λ| ≥ 2 (λ is called the linking number), then QM = (±λ), but this is not
unimodular. Thus, this can never be the homotopy type of a closed, oriented manifold.

We conclude that for m = 1, there are precisely two possibilities (distinguishing orientations). Now,
we turn to b2(M) = m ≥ 2. Then up to homotopy, we may take g : S3 →

∨
j S

2
j to be smooth on

the preimage of one hemisphere (not containing the “shared point” of the spheres) of each copy of S2.
Pick a regular value pj ∈ S2

j and set Kj := g−1(pj). This is again a framed 1-dimensional submanifold
of S3 and as before, [g] corresponds to the framed bordism class of K1 t · · · tKm.

This corresponds to an (m ×m)-matrix of linking numbers of the circles representing the Kj ’s (recall
that up to framed bordism, we may take the Kj ’s to be unknotted circles). We will argue that this is
the intersection form. every circle Kj bounds a surface Σj ⊂ B4 (push a Seifert surface in S3 into the
4-ball) and each Σj defines a closed surface by collapsing the boundary circle. In particular, when we
glue onto

∨
j S

2
j , the boundary is collapsed, i.e. each Σj yields a closed surface Σ̃j . These Σ̃j ’s yield a

basis for H2(
∨
j S

2
j ∪g B4): Since they intersect (only) the j-th copy of S2 exactly in one point this is a

“dual basis” to {S2
j }. If one computes Σ̃i · Σ̃j , it turns out to be the linking number lk(Ki,Kj). This

shows that (QM )ij = lk(Ki,Kj).

Requiring unimodularity in order to obtain the homotopy type of a manifold, we find all possibilities.
Conversely, the intersection form tells us the linking numbers, which determine how the manifold is
constructed and, in particular, the homotopy class [g].

One could get ambitious and ask if the intersection form actually determines the homeomorphism type. This
turns out to be a much harder question, which as been partially answered in the affirmative by Freedman:

Theorem 3.22 (Freedman, 1982).

• Two simply connected, CCOS 4-manifolds are orientation-preserving homeomorphic if and only if their inter-
section forms are isomorphic over Z.

• For every unimodular symmetric bilinear form over Z, there is an oriented, simply connected, topological 4-
manifold which realizes it as its intersection form.

One particular corollary to these two theorems deserves a special mention:

Corollary 3.23 (Toplogical 4-dimensional Poincaré Conjecture). If a topological 4-manifold is homotopy equiv-
alent to S4 then it is homeomorphic to S4.

By way of summary of the results in this section, consider how one might go about determining the home-
omorphism type of a given simply connected, CCOS 4-manifold M :

• If QM is definite, by Donaldson and Freedman’s theorems, M is homeomorphic to a connected sum
of b2(M) copies of either CP2s or CP

2
s, corresponding to whether QM is positive or negative definite.

• If QM is indefinite and odd, then by Hasse-Minkowski and Freedman, M is homeomorphic to the
manifold b+2 CP2#b−2 CP2; if it is even, then it is homeomorphic to a topological manifold with inter-
section form b2(M)−|σ(M)|

2 H + σ(M)
8 E8.
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3.3 Some Characteristic Classes

3.3.1 Euler Class and Second Stiefel-Whitney Class

Consider E → M , an oriented rank 2 real vector bundle. Choose a metric h. We can choose fiberwise
isometric, orientation-preserving local trivializations ψi : π−1(Ui) → Ui × R2. On Ui ∩ Uj , we have the
transition functions

ψj ◦ ψ−1
i : (Ui ∩ Uj)× R2 → (Ui ∩ Uj)× R2

(x, v) 7→ (x, gji(x)v)

where gji : Uij → SO(2) = S1 is smooth. The gij satisfy the cocycle conditions:

• gij = g−1
ji

• gijgjk = gik on Uijk

and therefore define a cohomology class [g∗∗] in Ȟ1(M ;SS1). This is independent of the choice of metric h.
As done before, we use the short exact sequence 0 → Z → R → S1 → 1 to induce a long exact sequence
on the level of sheaf cohomology. Since SR is a fine sheaf, we have an isomorphism δ : H1(M ;SS1) ∼=
H2(M ;SZ).

Definition 3.24 (Euler Class). We call δ[g∗∗] := e(E) the Euler class of E.

Remark 3.25. The ring homomorphism Z ↪→ R defines a map

H2(M ;Z) H2(M ;R) = H2
dR(M)

e(E) e(E)R

The latter can also be defined in terms of geometric quantities (relating to curvature).

It is clear that the Euler class classifies such bundles:

Proposition 3.26. Two oriented rank 2 bundles E, F → M are orientation-preserving isomorphic if and only if
e(E) = e(F ) ∈ H2(M ;Z).

We list some fundamental properties of the Euler class:

• e(E) = 0 if and only if E is trivial.

• e(Ē) = −e(E).

• If f : N → M is an orientation-preserving smooth map and E → M a rank 2 oriented bundle, then
e(f∗E) = f∗e(E).

Proposition 3.27. If M is a CCOS 4-manifold, then every α ∈ H2(M ;Z) is represented by a smoothly embedded
surface.

Proof. Let e be the Poincaré-dual of α ∈ H2(M ;Z) andE →M a smooth, oriented rank 2 vector bundle with
e(E) = e. Let s : M → E be a smooth section that is transverse to the zero section s0(M) = M . Thus, for
every p ∈ s(M) ∩ s0(M), TpM + Tps(M) = TpE. Then the preimage s−1(0) = M ∩ s(M) is a 2-dimensional
smooth submanifold ofM which inherits a natural orientation. It is a general fact about the Euler class that,
given this setup, ι∗([S]) = α ∈ H2(M ;Z). where ι : S ↪→ M is the inclusion. Modulo torsion, this may be
proven by showing that for any β ∈ H2(M ;Z), α · β = [S] · β (but it holds true generally).

Recall now that an oriented, real, rank 2 bundles E is equivalent to a complex line bundle L via the corre-
spondence SO(2) ∼= U(1), i.e. E ↔ L, such that LR = E.
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Definition 3.28 (First Chern Class). We define c1(L) := e(LR) to be the first Chern class of a complex line
bundle L, where LR is oriented by the complex structure.

We can reformulate definition 2.40:

Definition 3.29 (Second Stiefel-Whitney Class). Let E,F → M be an oriented, real vector bundles. Then
there exists a unique w2(E) ∈ H2(M ;Z2) such that

(i) If E is trivial, then w2(E) = 0.

(ii) w2(E ⊕ F ) = w2(E) + w2(F ).

(iii) If E has rank 2, then w2(E) = r(e(E)), where r : H2(M ;Z)→ H2(M ;Z2) is reduction modulo 2.

(iv) If f : N →M is a smooth map then w2(f∗(E)) = f∗(w2(E)).

These properties define the second Stiefel-Whitney class.

Uniqueness comes from uniqueness of c1(E), and we will not discuss existence (this is discussed at length
in the book “Characteristic Classes” by Milnor & Stasheff). An additional property of w2 is w2(E) = w2(Ē).

Proposition 3.30. IfM is a CCOS 4-manifold and w2(TM) = 0, then QM is even. The converse holds if H1(M ;Z)
is free of 2-torsion.

Proof. Let ι : Σ ↪→ M be a smoothly embedded, oriented surface representing a given class in H2(M ;Z).
Then ι∗TM = TM |Σ = TΣ⊕ ν(Σ) and both summands are oriented rank two bundles. Using the defining
properties of the second Stiefel-Whitney class, we have:

ι∗w2(TM) = w2(ι∗TM) = w2(ι∗TM) = w2(TΣ) + w2(ν(Σ))

Evaluating on [Σ], we find

〈ι∗w2(TM), [Σ]〉 = r〈e(TΣ), [Σ]〉+ r〈e(ν(Σ)), [Σ]〉 = r(χ(Σ)) + r(Σ · Σ) = r(Σ · Σ)

where we used that the Euler class of the tangent bundle evaluates on the fundamental class to the Eu-
ler characteristic χ(Σ) = 2 − 2g ≡ 0 mod 2 while the normal bundle of Σ can be viewed as a tubular
neighborhood, hence the zero locus of a generic section is exactly the self-intersection of Σ.

The equation 〈ι∗w2(TM), [Σ]〉 = r(Σ · Σ) makes it clear that if w2(TM) = 0, the intersection form must
be even, since every class is represented by an embedded surface. Conversely, if QM is even we see that
〈ι∗w2(TM), [Σ]〉 = 0 for every embedded surface Σ. Using the universal coefficients theorem, the Ext-term
vanishes if there is no 2-torsion, hence in this case we conclude that w2(TM) = 0.

Corollary 3.31. For any class α ∈ H2(M ;Z), 〈w2(TM), α〉 ≡ α · α mod 2.

In particular, if M is simply connected, H∗(M ;Z) is torsion-free so by the results of section 2.3.2 we have:

Corollary 3.32. Let M be a CCOS, simply connected 4-manifold. Then M is Spin if and only if QM is even.

The following important result speaks to the existence of Spinc structures:

Theorem 3.33 (Whitney). For any CCOS 4-manifold M , there exists some c ∈ H2(M ;Z) such that r(c) =
w2(TM), where r is reduction modulo 2. Hence such manifolds always admit a Spinc structure.
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Proof. By naturality of the universal coefficients theorem under reduction, we have a commutative ladder

0 Ext(H1(M ;Z),Z) H2(M ;Z) Hom(H2(M ;Z),Z) 0

0 Ext(H1(M ;Z),Z2) H2(M ;Z2) Hom(H2(M ;Z),Z2) 0

f

r

g

r r

f ′ g′

An element ϕ ∈ Hom(H2(M ;Z),Z2) lifts under r if and only if ϕ(t) = 0 for every torsion element t ∈
H2(M ;Z). The bilinearity of the intersection form guarantees that it kills all torsion. Indeed, if α were k-
torsion but α ·α 6= 0, we would have (kα) ·(kα) = 0 = k2(α ·α) 6= 0. SinceQM (α, α) ≡ 〈w2(TM), α〉 mod 2,
we see that they agree as elements of Hom(H2(M ;Z),Z2), i.e. g′(w2(TM)) = 〈w2(TM),−〉 =: ω must lift.

By surjectivity of the top-right horizontal arrow, there exists some x ∈ H2(M ;Z) such that r(g(x)) = ω.
Commutativity of the square tells us that g′(r(x)) = ω = g′(w2(TM)). But then exactness of the bottom row
tells us that there exists some γ ∈ Ext(H1(M ;Z),Z2) such that f ′(γ) = r(x) − w2(TM). The first vertical
map is surjective by general homological algebra arguments, hence there is some κ ∈ Ext(H1(M ;Z),Z)
such that r(κ) = γ, hence f ′(γ) = f(r(κ)) = r(f(κ)). Now set c = x − f(κ). Then r(c) = r(x) − r(f(κ)) =
r(x)− f(γ) = w2(TM), hence c is an integral lift of w2(TM).

3.3.2 Chern Classes

Definition 3.34 (Chern Classes). If L is a complex line bundle, the total Chern class of L is c(L) = 1 + c1(L).
If E = L1 ⊕ L2 ⊕ . . . ⊕ Lk is a direct sum of complex line bundles, we extend the above definition in the
obvious way:

c(E) := (1 + c1(L1)) ^ (1 + c1(L2)) ^ . . . ^ (1 + c1(Lk))

Expanding the above, we obtain the Chern classes ci(E):

c(E) = 1 +

k∑
i=1

c1(Li)︸ ︷︷ ︸
c1(E)∈H2(M ;Z)

+

k∑
1≤i<j≤k

c1(Li) ^ c1(Lj)︸ ︷︷ ︸
c2(E)∈H4(M ;Z)

+ . . .+

k∏
i=1

c1(Li)︸ ︷︷ ︸
ck(E)∈H2k(M ;Z)

The following proposition gives us a way to generalize the definition to arbitrary complex vector bundles:

Proposition 3.35. For every complex vector bundle E → M , there exists a so-called “splitting manifold” f : N →
M with the following properties

(i) f∗E ∼= L1 ⊕ . . .⊕ Lk, where the Li are line bundles.

(ii) f∗ is injective on H∗(M ;Z).

Sketch of Proof. Set n = rankCE and consider the projectivized bundle π : P(E) → M , which is the CPn−1-
bundle over M with (P(E))p = P(Ep). The transition functions act on fibers by the action of GL(n,C) on
CPn−1 (the action descends from the action on Cn). Now consider the pullback bundle π∗E, which yields
the following diagram:

L1 π∗E E

P(E) M

⊂
p

π

where L1 is the tautological line bundle

L = {(`, v) ∈ P(E)× E | v ∈ `} ⊂ {(`, v) ∈ P(E)× E | π(`) = p(v)} = π∗E

Then π∗E ∼= L1 ⊕ Q where Q is a complement Q ∼= π∗E/L1. Iterating this process, we get a tower of
projectivizations such that eventually f∗E ∼=

⊕
j Lj . Injectivity on the level of cohomology follows from

the Leray-Hirsch theorem.
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Definition 3.36. This allows us to define c(E) for an arbitrary complex vector bundle as unique element of
H∗(M ;Z) that maps to c(f∗E) = c(L1 ⊕ · · · ⊕ Lk) under f∗.

Remark 3.37. Of course, one should really check that using or deriving identities involving Chern classes
does not take one out of the image of f∗. This can be done inductively by carefully using the (proof of the)
Leray-Hirsch theorem.

This method of defining Chern classes in terms of split vector bundles and the techniques that it enables
one to make use of collectively embody the so-called splitting principle. The basic properties of the Chern
classes are:

(i) If E →M is trivial, then ci(E) = 0 for all i > 0.

(ii) c(E ⊕ F ) = c(E) · c(F ).

(iii) w2(ER) = r(c1(E)).

(iv) ci(f∗E) = f∗ci(E) for all i.

(v) ci(Ē) = (−1)ici(E).

(vi) ci(E) = 0 for i > rankCE.

(vii) ci(E) = e(ER) for i = rankCE.

Note that we omit the cup product in our notation: Since Chern classes commute, one can think of the
cup product of multiplication of polynomials. We will use the standard notation e(M) = e(TM), and
w2(M) = w2(TM) from now on. IfM is an almost complex manifold, ci(M) = ci(TM). However, note that
the Chern classes of M depend on the choice of an almost complex structure (so one should properly write
ci(M,J)), but confusion rarely arises.

Lemma 3.38. H∗(CPn;Z) ∼= Z[x]/(xn+1 = 0), where x ∈ H2(M ;Z) is of degree two, and Z[x]/(xn+1 = 0) =
{a0 + a1x

1 + a2x
2 + . . . anx

n| | ai ∈ Z} is the polynomial ring over x. Hence,

c(CPn) = (1 + x)n+1 =

n∑
k=0

n
k

xk =

n∑
k=0

ck(CPn)

Proof. The first statement is proven using cellular homology for the additive structure, while the multiplica-
tive structure is determined as follows: The standard embedding CP1 ↪→ CP2 yields the positive generator
of H2(CP2;Z) and the Poincaré dual [CP1] self-intersects once. Thus, the cup product of the generator
of H2(CP2;Z) with itself yields the positive generator of H4(CP2;Z). Proceeding inductively along those
lines yields the claim.

For the second part, let L be the tautological line bundle over CPn. Then by linear algebra arguments,
TCPn ⊕ C ∼=

⊕n
j=0 L. Hence c(TCPn) = (1 + x)n+1.

Example 3.39 (M = CP2). From the above formula, c1 = 3x, c2 = 3x2. Since TCP2 is of complex dimension
2, c2(CP2) = e(CP2), i.e.

〈c2(CP2), [CP2]〉 = 〈e(CP2), [CP2]〉 = χ(CP2) = 3 = b0 + b2 + b4

The final result in this section is concerned with surfaces embedded in almost complex 4-manifolds:

Theorem 3.40 (Adjunction Formula). LetM be an oriented, smooth 4-manifold with an almost complex structure7

J compatible with the orientation. Let ι : Σ → M be a smoothly embedded surface with J(TΣ) = TΣ, i.e. Σ is an

7A J ∈ Γ(End TM) such that J2
p = −IdTpM for each p ∈M is said to be an almost complex structure for TM .
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almost complex submanifold. Then the genus of Σ is given by

g(Σ) = 1 +
1

2

(
Σ · Σ− 〈c1(M), ι∗[Σ]〉

)
Proof. Since Σ is a J-holomorphic submanifold, we know that as complex vector bundles

TM |Σ = TΣ⊕ ν(Σ)

Hence, we have
ι∗c1(M) = c1 (TM |Σ) = c1(TΣ) + c1(ν(Σ)) = e(TΣ) + e(ν(Σ))

whence we can compute

〈c1(M), ι∗[Σ]〉 = χ(Σ) + Σ · Σ = 2− 2g(Σ) + Σ · Σ

In particular, we see that the genus is determined by the homology class.

Example 3.41. A holomorphic curve of degree d, Σd ⊂ CP2, is a smooth holomorphic curve of degree d, i.e.
[Σd] = d · [CP1] ∈ H2(CP2;Z), where [CP1] is the generator of H2(CP2;Z). Therefore, Σ ·Σ = d2 and by the
adjunction formula,

g(Σd) = 1 +
1

2
(d2 − 3〈x, [Σd]〉) =

1

2
(d2 − 3d+ 2) =

1

2
(d− 1)(d− 2)

This is known as the degree formula.

3.3.3 Pontryagin Classes

Definition 3.42 (Pontryagin Classes). Let V →M be a real vector bundle. We define

pi(V ) := (−1)ic2i(V ⊗R C) ∈ H4i(M ;Z)

the Pontryagin classes of V . The total Pontryagin class of V is p(V ) =
∑
j pj(V ).

The Pontryagin classes inherit all the properties of the Chern classes. Moreover, note that rankR V =
rankC(V ⊗R C), hence pi = 0 if 2i > rankR V .

Example 3.43.

(i) pi(V ) = 0 for all i if rankR V = 1.

(ii) Assume that rankR V = 2. Then pi(V ) = 0 for i ≥ 2, and p1(V ) = −c2(V ⊗R C). If V is orientable, we
fix an orientation and henceforth think of V as a complex line bundle L. For a complex vector bundle
E, ER ⊗R C ∼= E ⊕ Ē. Then

c2i(ER ⊗R C) = c2i(E ⊕ Ē) = c2i(E) + c2i−1(E)c1(Ē) + . . .+ c1(E)c2i−1(Ē) + c2i(Ē)

= c2i(E)− c2i−1(E)c1(E) + c2i−2(E)c2(E)− · · · − c1(E)c2i−1(E) + c2i(E)

Hence, in the case where E = V is orientable and of real-rank 2, we fix an orientation and think of V
as a complex line bundle L. c1(L) is then defined, and we have the important relation

p1(V ) = −c2(L⊕ L̄) = c21(L) = e2(V )

Theorem 3.44 (Signature Formula, Thom-Hirzebruch). For a CCOS 4-manifold M , the signature is given by

σ(M) =
1

3
〈p1(TM), [M ]〉
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Corollary 3.45.

(i) σ(M) = 0 if and only if p1(TM) = 0.

(ii) p1(M) is a multiple of 3 since σ(M) ∈ Z.

Example 3.46 (Surfaces in CP3). We discuss the analog of holomorphic curves in CP2 in one dimension
higher, namely algebraic surfaces in CP3: Consider ι : Xd ↪→ CP3, a smooth algebraic surface of degree d:
Xd is the zero locus of a generic homogeneous polynomial of degree d on C4. Let x ∈ H2(CP3,Z) be the
positive generator 〈x, [CP1]〉 = 1. As before, we have TCP3|Xd = TXd ⊕ ν(Xd), since Xd is a holomorphic
submanifold. Then

ι∗c(TCP3) = c(TXd) ^ c(ν(Xd))

=⇒ ι∗(1 + x)4 = (1 + c1(TXd) + c2(TXd))(1 + c1(ν(Xd)))

Equating the polynomials degree-by-degree, we see that

ι∗(4x) = c1(TXd) + c1(ν(Xd))

ι∗(6x2) = c2(TXd) + c1(TXd)c1(ν(Xd))

Now, it is a fact from complex geometry that that ν(Xd) = L = O(d)|Xd , where O(d) → CP3 is the holo-
morphic line bundle with c1(L) = d · x. Hence,

ι∗(4x) = c1(TXd) + c1(ι∗L) = c1(TXd) + ι∗(d · x)

=⇒ c1(TXd) = ι∗((4− d)x) = (4− d)ι∗x

Using this in the equation for c2, we get

c2(TXd) = (d(d− 4) + 6)ι∗(x2)

We can now compute the Euler characteristic:

χ(Xd) = 〈c2(TXd), [Xd]〉 = (d(d− 4) + 6)〈ι∗x2, [Xd]〉
= d(d2 − 4d+ 6)

where we used that [Xd] = d[CP2]. The first Pontryagin class is now easy to compute:

p1(TXd) = −c2(TXd ⊗R C) = −c2(TXd ⊕ TXd)

= −2c2(TXd) + c21(TX) = ι∗((−2(d(d− 4) + 6)) + (4− d)2)x2)

= (4− d2)ι∗x2

By the signature formula,

σ(Xd) =
1

3
(4− d2)〈ι∗x2, [Xd]〉 =

1

3
d(4− d2)

Note that this is indeed an integer: If d ≡ 0 mod 3 this is clear, while if d ≡ ±1 mod 3 then d2 = 1 mod 3,
hence 4 − d2 ≡ 0 mod 3. To complete our analysis we use the Lefschetz hyperplane theorem, which implies
that π1(Xd) = 1. This implies that b1(Xd) = 0 = b3(Xd), which in turn implies that b2(Xd) = χ(Xd) − 2.
Since we also know σ(M), we can now determine b±2 (M):

b±2 (Xd) =
1

2
(b2(Xd)± σ(Xd)) =

1

2
(χ(Xd)− 2± σ(M)) =

d

2

(
d2 − 4d+ 6± 1

3
(4− d2)

)
− 1

Let us investigate the situation for low values of d:

(i) d = 1 yields CP2; χ(X1) = 3 and σ(X1) = 1.

(ii) For d = 2, χ(X2) = 4 and σ(X2) = 0.
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Lemma 3.47. X2 is diffeomorphic to CP1 × CP1 = S2 × S2.

Proof. Consider the so-called Segre map

f : CP1 × CP1 CP3

([x : y], [z : w]) (xz : xw : yz : yw)

This is a well-defined holomorphic map, injective and in fact an immersion, hence an embedding
since it is automatically proper (this is proven in exercise 6.2). It is also precisely the zero-locus of the
homogeneous second degree polynomial f : C4 → C given by f(t0, t1, t2, t3) = t0t3 − t1t2. Any other
(generic) degree 2 polynomial can be deformed to it, hence X2

∼= S2 × S2.

(iii) For d = 3 we have χ(X3) = 9 and σ(M) = −5. The Hasse-Minkowski classification and Freedman’s
theorem tell us that this manifold is homeomorphic to CP2#6CP2. In fact, it is diffeomorphic to this
space, but we will not prove that.

(iv) d = 4 yields χ(X4) = 24 and σ(M) = −16. By the Hasse-Minkowski classification, the intersection
form is determined by the parity of QM . Since there is no torsion in this case, this is determined by
w2(Xd) = r(c1(Xd)) = r((4−d)ι∗x) ≡ d ι∗x mod 2. Hence for d = 4, QM is even and QM = 3H⊕2E8

by Hasse-Minkowski.

Definition 3.48 (K3 Surface). A K3 surface X is a compact, complex surface with π1(X) = 0 and
c1(X) = 0.

It is a fact, though not easy to prove, that any such spaces are diffeomorphic. Observe that a K3
surface saturates the 11

8 inequality.

We summarize these results in a table:

d = 1 d = 2 d = 3 d = 4

χ(Xd) 3 4 9 24

σ(Xd) 1 0 -5 -16

Diffeomorphic to CP2 S2 × S2 CP2#6CP2 K3

Regarding the 11
8 -conjecture, we can say a little bit more:

Proposition 3.49. The 11
8 -conjecture is equivalent to the following statement: Every simply connected CCOS 4-

manifold with even intersection form is homeomorphic to a connected sum of copies of K3, K3 and S2 × S2.

Proof. Suppose that our 4-manifold M is homeomorphic to a connected sum of copies of K3, K3 and S2 ×
S2, i.e. M = a#bK3#c(S2 × S2). Then

b2(M) = 22(a+ b) + 2c

σ(M) = 16(b− a)

So we compute
11

8
|σ(M)| = 11

8
|16(b− a)| ≤ 11

8
16(b+ a) = 22(a+ b) ≤ b2(M)

as desired. Conversely, suppose that M satisfies the 11/8-conjecture. Since M is Spin, Rohlin’s theorem
(for more information, see theorem 4.6) asserts that 16 divides σ(M), so we can write σ(M) = 16b for some
b ∈ Z. Note that we never need both K3 and K3 since by Freedman, K3#K3 ∼= 22(S2 × S2). There are
three cases.
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• If b = 0, hence σ(M) = 0. Then Hasse-Minkowski, tells us that QM ∼= aH for some Z 3 a ≥ 1.
Freedman’s theorem then guarantees that M ∼= a(S2 × S2).

• If b < 0, then we want to show that M ∼= |b|K3#a(S2 × S2), where b is determined by σ(M), and
a = (b2(M) − 22|b|)/2. For this to make sense, we need to check that a ≥ 0. First of all, since QM is
even, b2 is even (by Hasse-Minkowski), so a is certainly an integer. Then

b2(M) ≥ 11

8
|σ(M)| = 22|b| =⇒ b2(M)− 22|b| ≥ 0 =⇒ a ≥ 0

• Finally, if b > 0, by similar arguments, M ∼= bK3#a(S2 × S2), where a = (b2(M)− 22b)/2 ≥ 0 (again,
by the 11/8-conjecture). This completes the proof.

3.4 Self-Duality and the Half-de Rham Complex

3.4.1 Hodge Decomposition

Let V be an oriented vector space with of dimension 4 equipped with a scalar product 〈·, ·〉, i.e. the structure
of a tangent space of an oriented, Riemannian manifold.

Definition 3.50 (Hodge Star Operator). We define the Hodge Star operator ∗ : Λk(V ∗)→ Λ4−k(V ∗) by

α ∧ ∗β = 〈α, β〉vol

where we use the induced inner product on forms to make sense out of 〈α, β〉.

It satisfies ∗2 = Id on Λ2V ∗, so it has eigenvalues ±1. Hence Λ2V ∗ = Λ2
+V
∗ ⊕ Λ2

−V
∗.

Definition 3.51. Λ2
±(V ∗) are the space of self-dual (resp. anti self-dual) 2-forms.

Recall that given an oriented orthonormal basis, {e0, . . . e3}, we have the following basis for Λ2
±(V ∗):

e0 ∧ e1 ± e2 ∧ e3

e0 ∧ e2 ∓ e1 ∧ e3

e0 ∧ e3 ± e1 ∧ e2

Now let X be an oriented Riemannian 4-manifold with a metric g. We then have the decompositions

Λ2T ∗X = Λ2
+T
∗X ⊕ Λ2

−T
∗X

=⇒ Ω2(TX) = Ω2
+(X)⊕ Ω2

−(X)

Recall the L2 inner product of forms (here, we start assuming X is closed):

〈α, β〉L2 =

∫
X

g(α, β)volg

where we have once again induced g(−,−) on forms.

Definition 3.52 (Laplace Operator). We define the Laplace operator of g as ∆ := dd∗ + d∗d, where d∗ :
Ωk(X)→ Ωk−1(X). is the formal adjoint of d with respect to the L2 scalar product, d∗ = ± ∗ d ∗, where the
sign depends on the dimension and degree of the form it acts on. A form α ∈ H∗(X;Z) is called harmonic if
∆α = 0 and the space of harmonic k-forms is denoted byHk(X).

Lemma 3.53. If X is closed, then for a 2-form α, ∆α = 0 if and only if dα = 0 = d∗α.
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Proof. We simply use that d and d∗ are each other’s adjoints:∫
X

g(∆α, α)volg =

∫
X

(
|dα|2 + |d∗α|2

)
volg

This shows the equivalence.

Hence, every harmonic form α on a closed Riemannian manifold is closed. Therefore there is a canonical
mappingHi(X)→ Hi

dR.

Theorem 3.54 (Hodge). Every de Rham cohomology class contains a unique harmonic representative: Hk
dR(X) ∼=

Hk(X) and the isomorphism is given by the projectionHi(X)→ Hi
dR(M). Moreover, there is an orthogonal decom-

position
Ωk(X) = d(Ωk−1(X))⊕Hk(X)⊕ d∗(Ωk+1)

Notice that ∗ maps Hi(X) to H4−i(X), and as above, we have the decomposition of the harmonic 2-forms
into the space of self-dual and anti self-dual harmonic 2-forms:

H2(X) = H2
+(X)⊕H2

−(X)

Assume that α is closed and (anti) self-dual. Then first observe that d∗α = ± ∗ d ∗ α = ± ∗ dα = 0.
Furthermore, we have:

QX(α, α) =

∫
X

α ∧ α = ±
∫
X

α ∧ ∗α = ±
∫
X

|α|2volg ≷ 0

with equality if and only if α ≡ 0. Therefore b±2 (X) = dimH2
±. Now consider α self-dual and β anti

self-dual. Then

QX(α, β) =

∫
X

α ∧ β =

∫
X

(∗α) ∧ β =

∫
X

β ∧ ∗α =

∫
X

g(α, β)volg

= −
∫
X

α ∧ ∗β = −
∫
X

g(α, β)volg

Hence QX(α, β) = 0. Thus, the decomposition Ω2(X) = Ω2
+(X)⊕ Ω2

−(X) is orthogonal with respect to QX
(which coincides with the L2-inner product). In fact, the splitting is even orthogonal with respect to the
pointwise metric induced by g.

3.4.2 The Half-de Rham Complex

Now, consider the de Rahm complex of Xn:

0 Ω0(X) Ω1(X) · · · Ωn(X) 0
d d d

Proposition 3.55. For a closed, oriented, smooth 4-manifold X , the following is a complex with finite-dimensional
cohomology:

0 Ω0(X) Ω1(X) Ω2
+(X) 0

d d+

It is sometimes called the half-de Rham complex. Note that d+ is the composition Ω1(X)
d−→ Ω2(X)

π+

−→ Ω2
+(X).

The alternating sum of dimensions of the cohomology is 1
2

(
χ(X) + σ(X)

)
.
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Proof. Clearly d+ ◦ d = π+ ◦ d2 = 0 and H0
dR(X) is the first cohomology vector space of the complex. Let

α ∈ Ω1(X) lie in the kernel of d+. Now observe

0 =

∫
X

d(α ∧ dα) =

∫
X

dα ∧ dα =

∫
X

(d+α+ d−α) ∧ (d+α+ d−α)

=

∫
X

d+α ∧ ∗d+α− d−α ∧ ∗d−α

=

∫
X

(|d+α|2 − |d−α|2)volg

We see that d+α = 0 if and only if d−α = 0, which is then equivalent to dα = 0. Hence the middle
cohomology vector space is simply H1

dR(X). For the last, we just need to find coker d+. Take h ∈ H2
+(X)

and α ∈ Ω1(X). Then ∫
X

h ∧ d+α =

∫
X

d+α ∧ ∗h = 〈d+α, h〉L2

but on the other hand ∫
X

h ∧ d+α =

∫
X

d(h ∧ α) = 0

by Stokes’ theorem, plus the fact that Ω2
+(X)⊕Ω2

−(X) is an orthogonal decomposition. Hence the image of
Ω1(X) under d+ is orthogonal to H2

+(X). Now, we use Hodge decomposition (theorem 3.54) to uniquely
write ω ∈ Ω2

+ as ω = h + dα + d∗β where h is harmonic. By uniqueness of Hodge decomposition and
self-duality, we see ∗h = h, ∗dα = d∗β and ∗d∗β = dα, i.e. ω = h + dα + ∗dα = h + 2d+α. But then
clearly Ω2

+(X)/d+(Ω1(X)) ∼= H2
+(X), which is our third cohomology vector space. The alternating sum of

the dimensions is:

b0(X)− b1(X) + b+2 (X) =
1

2
χ(X) +

1

2
b+2 (X)− 1

2
b−2 (X) =

1

2
(χ(X) + σ(X))

as claimed.

We can “roll up” all the information about this complex into a single invariant. Consider the operator
d+ ⊕ d∗ : Ω1(X)→ Ω2

+(X)⊕ Ω0(X).

Definition 3.56. The Fredholm index of d+ ⊕ d∗ is defined as

ind(d+ ⊕ d∗) = dim ker(d+ ⊕ d∗)− dim coker(d+ ⊕ d∗)

= b1(X)− b+2 (X)− b0(X)

since ker(d+ ⊕ d∗) = (H1(X) ⊕ d∗Ω2(X)) ∩ (H1(X) ⊕ dΩ0(X)) = H1(X). Here, we used the fact that an
operator with finite-dimensional kernel and cokernel is Fredholm to make the index well-defined.
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4 The Dirac Operator and the Seiberg-Witten Equations

4.1 Elliptic Operators

Let E, F →M be bundles, and P : Γ(E)→ Γ(F ) a first-order differential operator (think of P as expressed
in terms of a covariant derivative, using only one power).

Definition 4.1. The symbol of P is a bundle map σ(P ) : T ∗M → Hom(E,F ), defined as follows. Let ξ ∈
T ∗pM , and e ∈ Ep. Choose an extension ẽ of e to a section ofE, and choose a smooth function f ∈ C∞(M) on
M with f(p) = 0 and (df)p = ξ (e.g. multiply a representative of the germ which satisfies these conditions
with a cutoff function). Then

(σ(P )(ξ))(e) := (P (f · ẽ))(p)

We will not show that this is indeed well-defined, but suffice it to say that it is crucial that P is a local
operator.

Definition 4.2 (Elliptic Operator). P is elliptic if σ(P )(ξ) ∈ Hom(E,F ) is an isomorphism for any ξ 6= 0.

IfP is elliptic, it is also Fredholm, that is, dim kerP and dim cokerP are both finite. In particular, the Fredholm
index indP := dim kerP − dim cokerP is well-defined. Observe that, P can only be elliptic if rankE =
rankF .

Example 4.3.

(i) P = d : Ωk(M) → Ωk+1(M). As in the definition above, pick an ω ∈ Λk(T ∗p (M)), and extend it to a
form ω̃ ∈ Ωk(M). Choose a function f such that f(p) = 0 and (df)(p) = ξ for a given ξ ∈ T ∗pM . Then

d(f · ω̃)(p) = (df ∧ ω̃ + fdω̃(p) = (ξ ∧ ω)(p)

Hence, σ(d)(ξ) = ξ∧. But this map is not invertible, since e.g. multiples of ξ are in its kernel. Hence,
d is not an elliptic operator. However, we see that if we take a direct sum of (non-elliptic) operators
whose symbols have non-overlapping kernel, we can obtain an elliptic operator: This is exactly what we
did with d+ ⊕ d∗.

(ii) P = DA : Γ(V )→ Γ(V ), the Dirac operator of a Spinc-structure with Spinc-connection A. Once again,
pick a ϕ ∈ Vp and extend to ϕ̃ ∈ Γ(V ); fix f with f(p) = 0 and (df)(p) = ξ for a ξ ∈ T ∗p V . Then

DA(f · ϕ̃)(p) = γeval ◦ g(∇A(fϕ̃)(p)) = γeval ◦ g((df ⊗ ϕ̃+ f∇Aϕ̃)(p))

= γ(ξ∗) · ϕ

where ξ∗ is dual to ξ under the identification T ∗pM ∼= TpM induced by g. Hence, σ(DA)(ξ) = γ(ξ∗) and
DA is elliptic (since Clifford multiplication with a fixed element is an isomorphism). Since DA is for-
mally self-adjoint, one typically finds indDA = 0. However, there are ways to “break the symmetry”
and obtain something interesting.

We now specialize to a closed, oriented, smooth (COS) 4-manifold M with Spin structure, V = V+⊕V− and
D+
A : Γ(V+)→ Γ(V−), which is elliptic but not self-adjoint. A celebrated theorem then relates the Fredholm

index of D+
A to a topological quantity:

Theorem 4.4 (Atiyah-Singer Index Theorem).

indCD
+
A = 〈Â(M), [M ]〉

where Â(M) = 1− (1/24)p1(M) + . . .. On a 4-manifold, the degree 4 part is relevant. We obtain

indCD
+
A = − 1

24
〈p1(TM), [M ]〉 = −1

8
σ(M) (4.1)
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Corollary 4.5. If M is Spin, σ(M) is divisible by 8.

In fact, one can do better than this immediate corollary:

Theorem 4.6 (Rohlin). If M is a COS, Spin manifold of dimension four, then σ(M) ≡ 0 mod 16.

Proof. We use the Atiyah-Singer index formula: The kernel and cokernel of D+
A are C-vector spaces with

indCD
+
A = dimC kerD+

A − dimC cokerD+
A = − 1

8σ(M). In the case of a Spin structure, charge conjugation
preserves the kernel and cokernel of D+

A . Hence, these are in fact quaternionic vector spaces, hence their
C-dimensions are in fact even. Thus, the difference is even, i.e. σ(M)/8 ≡ 0 mod 2.

Remark 4.7. This shows that, in the intersection form, only even multiples of E8 may occur. Hence, many
simply connected 4-manifolds with even intersection form do not admit a smooth structure since if they
did, they would be Spin.

For a Spinc structure on a COS manifold M4 which does not necessarily come from a Spin structure there is
a generalization of the index formula:

indCD
+
A =

〈
Â(M) · ec1(Ls)/2, [M ]

〉
=

〈(
1− 1

24
p1(M) + . . .

)(
1 +

1

2
c1(Ls) +

1

8
c21(Ls) + . . .

)
, [M ]

〉
=

1

8

(〈
c21(Ls), [M ]

〉
− σ(M)

)
4.2 The Weitzenböck Formula

Recall that in section 2.5.1, we defined the Dirac operator D on R4 such that D2 = ∆. We now wish to make
a similar construction on closed 4-manifolds. Let X be a COS 4-manifold with a Spinc-structure s, spinor
bundle V = V+⊕V− and characteristic line bundle Ls = detV±. Let Â be a U(1)-connection on Ls. Together
with the Levi-Cività connection of g, this yields a Spinc-connection A on V (cf. corollary 2.66). Recall that
in lemma 2.53, we obtained the following expression for the Dirac operator DA : Γ(V )→ Γ(V ) with respect
to a local orthonormal frame {e1, . . . e4} of (TX, g):

DAφ =

4∑
i=1

ei · ∇Aeiφ

We now state the main result of the section.

Theorem 4.8 (Weitzenböck Formula). The Dirac operator satisfies

D2
A = DA ◦DA = ∇∗A∇A +

1

4
sg +

1

2
γ
(
FÂ
)

where FÂ ∈ Ω2(X; u(1)) is the curvature of Â, γ
(
FÂ
)
∈ End(V ) is the extension of Clifford multiplication to

2-forms and sg is the scalar curvature of g which acts on V by multiplication.

We will prove this in small steps.

Definition 4.9 (Bochner Laplacian). ∇∗A∇A : Γ(V ) → Γ(V ) is called the Bochner Laplacian. Recall that the
covariant derivative ∇A : Γ(V ) → Γ(T ∗X ⊗ V ), so we define its adjoint ∇∗A : Γ(T ∗X ⊗ V ) → Γ(V ) as its
adjoint with respect to the L2-inner product: 〈∇∗Aφ, ψ〉L2 = 〈φ,∇Aψ〉L2 .
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Lemma 4.10. Let {ei} be a local orthonormal basis for X . Then for φ ∈ Γ(V ), we have

∇∗A∇Aφ =
∑
i

(
−∇Aei∇

A
eiφ+∇A∇eieiφ

)
where ∇ is the Levi-Civita connection.

Proof. Suppose ψ ∈ Γ(V ) has compact support on the open set on which the local frame {ei} is defined
and otherwise arbitrary. Then ∇∗A∇Aφ is characterized by its inner product with such ψ’s. We have, after
expanding∇Aφ in the given basis:

〈∇∗A∇Aφ, ψ〉L2 =
∑
i

∫
X

〈∇Aeiφ,∇
A
eiψ〉volg

Here, the pointwise metric 〈−,−〉 is induced by g and the Hermitian metric on V . On the other hand, we
may start on the other side of the identity we want to prove and use that∇A is compatible with the metric:∫

X

〈∑
i

(−∇Aei∇
A
eiφ+∇A∇eieiφ, ψ

〉
volg =

∑
i

∫
X

(
− Lei〈∇Aeiφ, ψ)〉+ 〈∇Aeiφ,∇

A
eiψ〉+ 〈∇A∇eieiφ, ψ〉

)
volg

Thus, all we need to show is that the first and last term cancel. Set η(Y ) = 〈∇AY φ, ψ〉 to find:∑
i

∫
X

(−Leiη(ei) + η(∇eiei))volg = −
∑
i

∫
X

(∇eiη)(ei)volg

Now, we expand in a local parallel frame {ωj} to see that pointwise
∑
i,j(∇ei(ηjωj))(ei) =

∑
i ∂iηi. On the

other hand, we have the following pointwise calculation:

∗d ∗
(∑

j

ηjω
j
)

= ∗d
(∑

j

ηj(−1)jω0 ∧ · · · ∧ ω̂j ∧ · · · ∧ ω3
)

=
(∑

j

∂jηj

)
∗ vol

=
∑
j

∂jηj

On η ∈ Ω1(X), we have d∗η volg = − ∗ d ∗ ηvolg = d ∗ η (where we used that d ∗ η ∈ Ω4(X) and hence
∗(d ∗ η)volg = d ∗ η). Thus, we find∑

i

∫
X

(−Leiη(ei) + η(∇eiei))volg =

∫
X

d∗η volg =

∫
X

d ∗ η = 0

by Stokes’ theorem. This proves our assertion.

We now make the following definition.

Definition 4.11 (Curvature). For A a Spinc-connection on V , we define its curvature FA ∈ Ω2(X,End(V ))
by

FA(X,Y )φ = ∇AX∇AY φ−∇AY∇AXφ−∇A[X,Y ]φ

This is tensorial in X,Y, φ.

Thus, we have a map

Γ(Λ2(T ∗X)⊗ End(V )) Γ(End(V )⊗ End(V )) Γ(End(V ))

FA γ(FA)

γ⊗Id comp.
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where comp. denotes composition of endomorphisms. If {ei} is a local orthonormal basis, with {ωi} its
dual basis, we have the following expressions:

FA =
∑
i,j

FA(ei, ej)ω
i ⊗ ωj = 2

∑
i<j

FA(ei, ej)ω
i ∧ ωj

=⇒ γ(FA)(φ) = 2
∑
i<j

γ(ei ∧ ej) ◦ FA(ei, ej)(φ) =
∑
i,j

γ(ei ∧ ej)(FA(ei, ej)(φ))

Lemma 4.12. The Dirac operator satisfies

D2
A =

(
∇∗A∇A +

1

2
γ(FA)

)
.

Note the appearance of FA, not FÂ.

Proof. This is a tensorial equation hence we may use a local parallel frame {ej} in p. Then we simply
compute:

D2
Aφ = DA

(∑
i

ej · ∇Aejφ
)

=
∑
i,j

ei · ∇Aei(ej · ∇
A
ejφ) =

∑
i,j

ei ·
(
ej · ∇Aei∇

A
ejφ
)

Splitting this equation into terms i = j and i 6= j and using the defining properties of Clifford multiplica-
tion, we find:

D2
Aφ =

∑
i

−∇Aei∇
A
eiφ+

∑
ei · ej · (∇Aei∇

A
ej −∇

A
ej∇

A
ei)φ

Observe that the last term is 1
2γ(ei ∧ ej)(· · · )φ. Now use lemma 4.10 and our expression for the curvature

(remembering that∇ei = 0 and [ei, ej ] = 0) and conclude

D2
Aφ = ∇∗A∇Aφ+

1

2
γ(FA)(φ)

The last question that needs to be settled is: How does FA relate to FÂ? Without proof, we claim:

Lemma 4.13. Locally, the following formula holds with respect to a local frame {ei}:

γ(FA) = γ(FÂ) +
1

4

∑
i

γ(ei)γ(R(A))

where
R(A) =

1

2

∑
j,k,l

Rijkl ej ∧ ek ∧ el

and Rijkl = g(R(ei, ej)ek, el) is the Riemann curvature tensor.

Taking this at face value, we see that

1

2
γ(FA) =

1

2
γ(FÂ) +

1

8

∑
i,j,k,l

γ(ei)γ(ej)γ(ek)γ(el)Rijkl

and we want to show that this last term equals 1
4sg . Recall thatRiikl = Rijkk = 0 andRijkl+Riklj+Riljk = 0

(the first Bianchi identity). The first identity tells us we can simplify the second term to

1

2

∑
i<j
k<l

γ(ei)γ(ej)γ(ek)γ(el)Rijkl
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while the Bianchi identity shows that the terms where i, j, k or i, j, l are all pairwise different cancel out.
Therefore, the only terms are contribute are those with i = k and j = l so we find that the second term
equals

1

2

∑
i<j

γ(ei)γ(ej)γ(ei)γ(ej)Rijij = −1

2

∑
i<j

Rijij =
1

2

∑
i<j

Rijji

where we used the definition of Clifford multiplication. Now recall that Ric(X,Y ) = tr(Z 7→ R(Z,X)Y ),
i.e. Ricij =

∑
k g(R(ek, ei)ej , ek) and sg =

∑
i Ricii =

∑
i,j Rijji = 2

∑
i<j Rijji, we obtain:

1

2
γ(FA) =

1

2
γ(FÂ) +

1

4
sg

This completes our proof of the Weitzenböck formula.

If M4 is Spin and COS, the characteristic line bundle L is trivial, hence we may take Â = d, hence FÂ = 0
so that

D2
A = ∇∗A∇A +

1

4
sg

By the Atiyah-Singer index theorem, indCD
+
A = − 1

8σ(M). Since the Weitzenböck formula holds on V± with
D2
A = D∓AD

±
A , combining it with the Atiyah-Singer theorem yields the so-called “Lichnerowicz argument”:

Theorem 4.14 (Lichnerowicz). If a COS, Spin 4-manifold admits a metric g such that sg > 0, then σ(X) = 0.

Proof. We will show that indD+
A = 0. First, observe that

indD+
A = dim kerD+

A − dim cokerD+
A = dim kerD+

A − dim kerD−A

since D∓A is the formal adjoint of D±A . Thus, assume φ ∈ kerD±A . Then we find

0 = D±AD
∓
Aφ = ∇∗A∇Aφ+

1

4
sgφ

and taking the L2-inner product with φ itself yields

〈∇Aφ,∇Aφ〉L2 +
1

4
〈sgφ, φ〉L2 =

∫
X

(
|∇Aφ|2 +

1

4
sg|φ|2

)
volg = 0

The terms must vanish individually, thus if sg > 0 we see∇Aφ = 0 and in fact φ = 0, i.e. dim kerD±A = 0.

Corollary 4.15. If the manifold admits a metric with non-negative scalar curvature, φ ∈ kerD±A still implies∇Aφ =
0, i.e. φ must be parallel.

Example 4.16.

(i) S2 × S2 is Spin and admits a metric with positive scalar curvature, therefore σ(S2 × S2) = 0.

(ii) K3 is Spin has σ(K3) = −16: This means it does not admit a metric with sg > 0—but in fact K3, being
a Calabi-Yau manifold, admits a Ricci-flat (hence sg ≡ 0) Kähler metric.

(iii) The above theorem does not apply to manifolds of the form CP2#k ¯CP2 (k > 1), which admit a metric
with sg > 0 and have nonzero signature, yet do not admit a Spin structure.

4.3 The Seiberg-Witten Equations

Let (X, g) be a COS Riemannian 4-manifold with a Spinc-structure s, equipped with a Spinc-connection A;
let Γ(V+) denote the space of positive spinors, with Φ ∈ Γ(V+) a positive spinor. Our main object of study
in the following are the Seiberg-Witten (SW) equations for the pair (A,Φ).
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The first SW equation, called the Dirac equation reads D+
AΦ = 0. For the second equation, called the cur-

vature equation, we recall (cf. lemma 2.9) that γ induces an isomorphism
∧2

+ T
∗X ⊗ C ∼= End0(V+), where

End0 denotes the space of traceless endomorphisms. It maps real-valued self-dual forms to traceless, skew-
Hermitian endomorphisms and imaginary-valued forms to traceless, Hermitian endomorphisms. In par-
ticular, F+

Â
(where Â is the U(1)-connection associated to A) corresponds, as an element of Ω2

+(X, iR), to a
traceless, Hermitian endomorphism under γ.

Now let Φ ∈ Γ(V+) be a positive spinor. We define Φ ⊗ Φ† ∈ End(V+) by (Φ ⊗ Φ†)(ψ) = Φh(Φ, ψ), where
h(−,−) is the Hermitian metric (anti-linear in the first entry) on Γ(V+). We denote its traceless part by
(Φ⊗ Φ†)0. Consider Φ = ( ab ) in a basis for V+. Then

Φ⊗ Φ† =

|a|2 ab̄

āb |b|2


so

(Φ⊗ Φ†)0 =

 1
2

(
|a|2 − |b|2

)
ab̄

āb 1
2

(
|b|2 − |a|2

)


is the desired trace-free endomorphism of V+.

Definition 4.17. We define σ(Φ,Φ) ∈ Ω2
+(X, iR) through the relation

γ(σ(Φ,Φ)) = (Φ⊗ Φ†)0

The curvature equation reads F+

Â
= σ(Φ,Φ). Thus, the SW equations for (A,Φ) are:

D+
AΦ = 0

F+

Â
= σ(Φ,Φ)

Since the physical interpretation of these equations is in terms of massless magnetic monopoles, they are
sometimes called the monopole equations. Solutions (A,Φ) may also be called monopoles.

As mentioned in the introductory chapter, the monopole equations are nonlinear partial differential equa-
tions: The Dirac equation contains a term of second order in AΦ, while the curvature equation is quadratic
in Φ (through σ(Φ,Φ)). In applications, it is often necessary to perturb the curvature equation by a self-dual
imaginary-valued form ω ∈ Ω2

+(X, iR). The ω-perturbed SW equations read:

D+
AΦ = 0

F+

Â
= σ(Φ,Φ) + ω

Definition 4.18 (SW Parameter Space). The space of parameters for the SW equations on X is

P = {(g, ω) ∈ Met(X)× Ω2
+(X, iR)}

Definition 4.19 (SW Configuration Space). The space

Cs = As × Γ(V+)

where As is the space of Spinc-connections on V compatible with the Levi-Civita connection is called the
Seiberg-Witten configuration space.

Note that by corollary 2.66, we can identifyAs withA(Ls), the space of Hermitian connections on Ls, which
is an affine space over the space Ω1(X, iR) of imaginary-valued 1-forms over X .

Corollary 4.20. The SW configuration space Cs is the product of a vector space and an infinite-dimensional affine
space.
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Consider the map

fω : Cs iΩ2
+(X)× Γ(V−)

(A,Φ) (F+

Â
− σ(Φ,Φ)− ω,D+

AΦ)

then the solution space of the SW equations

Zω = {(A,Φ) ∈ Cs| (A,Φ) satisfy the SW equations} = f−1
ω (0) .

Definition 4.21. The energy of a pair (A,Φ) ∈ Cs is given by

E(A,Φ) =

∫
X

(
|D+

AΦ|2 + |F+

Â
− σ(Φ,Φ)|2 +

1

8
s2
g

)
volg − 4π2〈c21(Ls), [X]〉

The following proposition makes it manifest that this quantity is always positive.

Proposition 4.22. We energy can be re-expressed as:

E(A,Φ) =

∫
X

(
|∇AΦ|2 +

1

8

(
sg + |Φ|2

)2
+ |F−

Â
|2
)

volg

for all (A,Φ) ∈ Cs.

To prove this, we need some identities:

Lemma 4.23. Equip End(V+) with the inner product 〈A,B〉 = tr(AB†). Then, for every ω, η ∈ iΛ2
+T
∗X and

Φ ∈ V+, we have:

(i) 〈γ(ω), γ(η)〉 = 4〈ω, η〉.

(ii) 〈γ(ω)Φ,Φ〉 = 4〈ω, σ(Φ,Φ)〉.

(iii) |Φ|4 = 8〈σ(Φ,Φ), σ(Φ,Φ)〉.

Proof. This is proven in exercise 8.1.

Proof of Proposition. Recall the Weitzenböck formula, which implies∫
X

|D+
AΦ|2volg =

∫
X

〈D−AD
+
AΦ,Φ〉volg =

∫
X

(
|∇AΦ|2 +

1

4
sg|Φ|2 +

1

2
〈γ(F+

Â
)Φ,Φ〉

)
volg

Using the lemma, we have 1
2 〈γ(F+

Â
Φ,Φ〉 = 2〈F+

Â
, σ(Φ,Φ)〉. This term is canceled by the second term from:∫

X

|F+

Â
− σ(Φ,Φ)|2volg =

∫
X

(
|F+

Â
|2 − 2〈F+

Â
, σ(Φ,Φ)〉+ |σ(Φ,Φ)|2

)
volg

Moreover, |σ(Φ,Φ)|2 = 1
8 |Φ|

4. Putting this term together with the term 1
8s

2
g and the scalar curvature term

from |D+
AΦ|2, we obtain

1

8

∫
X

(sg + |Φ|2)2volg

Now, we have arrived at

|D+
AΦ|2 + |F+

Â
− σ(Φ,Φ)|2 +

1

8
s2
g = |∇AΦ|2 +

1

8

(
sg + |Φ|2

)2
+ |F+

Â
|2

Thus, all that is left is to show that

−4π2〈c21(Ls), [X]〉 =

∫
X

(
|F−
Â
|2 − |F+

Â
|2
)
volg
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This follows from Chern-Weil theory, which yields a definition of Chern classes in terms of curvature quan-
tities. In particular, we have c1(Ls) = i

2π [FÂ]. Thus, we find

−4π2〈c21(Ls), [X]〉 =

∫
X

FÂ ∧ FÂ =

∫
X

F+

Â
∧ F+

Â
+ F−

Â
∧ F−

Â
=

∫
X

F+

Â
∧ (∗F+

Â
)− F−

Â
∧ (∗F−

Â
)

Now, recall that the extension of the Hodge star operator to C-valued forms is

α ∧ ∗β̄ = 〈α, β〉volg

Since F±
Â

takes values in iR, F̄±
Â

= −F±
Â

and we conclude:

−4π2〈c21(Ls), [X]〉 =

∫
X

(
− |F+

Â
|2 + |F−

Â
|2
)
volg

This completes the proof.

Corollary 4.24. If there is a solution to the SW equations, then

〈c21(Ls), [X]〉 ≤ 1

32π2

∫
X

s2
gvolg

If equality holds, then every solution (A,Φ) has E(A,Φ) = 0, and thus ∇AΦ = F−
Â

= sg + |Φ|2 = 0.

Proof. The previous proposition showed that E(A,Φ) ≥ 0, with the conditions of equality given by the
second assertion.. If (A,Φ) solve the SW equations, our first expression for the energy becomes

E(A,Φ) =
1

8

∫
X

s2
gvolg − 4π2〈c21(Ls), [X]〉 ≥ 0

and rearranging gives the desired inequality.

4.4 Symmetries of the Seiberg-Witten Equations

4.4.1 Charge Conjugation

Recall the charge conjugation map J : s̄ → s from section 2.2.3. It induces a map τ : Cs̄ → Cs. Let A be
a Spinc-connection on V̄ : It induces a Spinc-connection A∗ on V , defined by ∇A∗X (JΦ) = J∇AXΦ for every
Φ ∈ Γ

(
V̄
)
. Now we define τ by

τ : Cs̄ Cs
(A,Φ) (A∗, JΦ)

(Ã∗, J−1Ψ) (Ã,Ψ)

We see that τ2 = Id, i.e. τ is an involution.

Lemma 4.25. A pair (A,Φ) ∈ Cs̄ satisfies the SW equations for parameters (g, ω) if and only if τ(A,Φ) ∈ Cs satisfies
them for (g,−ω).

Proof. We first check the Dirac equation, combined with the fact that J commutes with γ:

D+
A∗JΦ =

∑
i

ei · ∇A
∗

ei JΦ =
∑
i

ei · J∇AeiΦ = J
∑
i

ei · ∇AeiΦ = JD+
AΦ

Thus, (A,Φ) satisfies the Dirac equation if and only if (A∗, JΦ) does. The curvature satisfies FÂ∗ = −FÂ
since V̄ ∼= V ∗ and the curvature of the dual connection on the dual bundle is negative the original curvature.
Furthermore, exercise 8.2 shows that σ(JΦ, JΦ) = −σ(Φ,Φ). Thus, the curvature equation is satisfied by
(A∗, JΦ) if we map ω to −ω.
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4.4.2 The Action of the Gauge Group

The gauge group of the SW equations, G = C∞(X,S1), has actions defined as follows.

• On Cs we have, for u ∈ G,
(A,Φ) 7→ (A,Φ) · u := ((u−1)∗A, uΦ) ,

and the Spinc-connection transforms as∇(u−1)∗A := u∇Au−1.

• On iΩ2
+(X)× Γ(V−) ⊇ fω(Cs), we define an action by (η, ψ) 7→ (η, ψ) · u := (η, uψ).

Lemma 4.26. fω is equivariant with respect to these actions of G, i.e. fω((A,Φ) · v) = fω(A,Φ) · v.

Proof. We can simply write out

fω((A,Φ) · v) = fω((v−1)∗A, vΦ) = (F+
̂(v−1)∗A

− σ(vΦ, vΦ)− ω,D+
(v−1)∗A(vΦ))

Firstly, σ(vΦ, vΦ) = σ(Φ,Φ), since by definition of σ, we have

γ(σ(Φ,Φ)) = (Φ⊗ Φ†)0 = (vΦ⊗ v̄Φ†)0 = γ(σ(vΦ, vΦ))

where we used that v takes values in S1, i.e. v̄ = v−1. Next, we consider the curvature, using ∇ ̂(v−1)∗AΦ =
v · ∇A(v ·Φ) where · denotes the corresponding group action (which we need not explicitly know) and will
be omitted in the following:

F+
̂(v−1)∗A

(X,Y )s =
(
[∇

̂(v−1)∗A
X ,∇

̂(v−1)∗A
Y ]−∇

̂(v−1)∗A
[X,Y ]

)
s

= v[∇X ,∇Y ]v−1s− v∇[X,Y ]v
−1s

= v∇X((LY v
−1)s+ v−1∇Y s+ . . .

= v(LXLY v
−1)s+ v(LY v

−1)∇Xs+ v(LXv
−1)∇Y s+∇X∇Y s+ . . .

Note that the middle terms are symmetric in X,Y , hence will disappear. The first term will cancel against
one term of v(L[X,Y ]v

−1), so only the last term remains. This shows that we recover F+

Â
(X,Y )s.

Finally, we check that D+
(v−1)∗AvΦ = vD+

AΦ. But this is immediate:

D+
(v−1)∗AvΦ =

∑
i

ei · ∇(v−1)∗A
ei vΦ =

∑
i

ei · v∇AeiΦ = vD+
AΦ

completing our proof that fω((A,Φ) · v) = (F+

Â
− σ(Φ,Φ)− ω, vD+

AΦ) = fω(A,Φ) · v.

Lemma 4.27. If X4 is connected, the stabilizer, G(A,Φ) of (A,Φ) ∈ Cs is given by

G(A,Φ) =

{
{1} if Φ 6≡ 0 ,

U(1) if Φ ≡ 0 .

Proof. u ∈ G(A,Φ) means precisely (A,Φ) · u = (A,Φ), i.e. u∇Au−1 = ∇A and uΦ = Φ. Since Ad(u−1) is
trivial, we have u∇Au−1 = ∇A + ud(u−1). This equals ∇A if and only if ud(u−1) = −u−1du = 0, hence
u ∈ S1 is constant. If Φ ≡ 0, and u ∈ S1 is an element of the stabilizer. But if Φ does not identically vanish,
v ≡ 1 is the only element in the stabilizer.

Correspondingly, we make the following definition:

Definition 4.28. The space of irreducible configurations is

C∗s = {(A,Φ) ∈ Cs | Φ 6≡ 0}

Cs \ C∗s is the set of reducible solutions.
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5 Topology of the Configuration Space

So far we have worked with smooth manifolds. To define the SW invariants, we have to introduce addi-
tional structures on the (infinite-dimensional!) configuration space Cs. In particular, we need to topologize
it. The best functional framework for such purposes is supplied by the machinery of Sobolev spaces.

Consider a vector bundle E → X with a Hermitian metric. On smooth sections Γ(E), define a norm

‖s‖pk :=

(∫
X

(
|s|p + |∇s|p + . . .+ |∇ks|p

)
volg

)1/p

for p, k ∈ N.

Definition 5.1 (Sobolev Space). The Banach space completion of Γ(E) with respect to ‖ · ‖pk is a Sobolev
space of E, denoted Lpk(E). We write Lp(E) for Lp0(E).

In our discussion, we will need the following assumptions on the quantities that appear in our study of the
SW equations:8:

• Positive spinors Φ ∈ Γ(V+) lie in L2
5(V+).

• Sections iΛ2
+(X)× V− are elements of L2

4(iΛ2
+(X)× V−).

• As ∈ L2
5(A), i.e. of the form Â0 + a for Â0 a smooth connection on Ls and a ∈ iL2

5(T ∗X).

• G consists of maps in L2
6(X,S1).

We will slightly abuse notation and keeping using the old symbols when we are in actuality referring to
corresponding Sobolev spaces.

Lemma 5.2. The L2
6-gauge group G is an infinite-dimensional Abelian Hilbert Lie group9. It acts smoothly on the

L2
5-configuration space Cs, and on L2

4-sections of iΛ2
+(X)× V−.

Proof. G is a Hilbert manifold; we just need to check that the multiplication makes sense. For that, we view
G as a subset of L2

6(X;C) and use a Sobolev multiplication theorem to conclude that multiplication L2
6(X,C)×

L2
6(X,C)→ L2

6(X,C) is a bounded map, hence G has an Abelian Lie group structure.

Definition 5.3 (SW Base and Moduli Spaces). We call B := Cs/G the base space of the SW equations. The
moduli space isMω := Zω/G ⊂ B.

5.1 The Linearized Seiberg-Witten Equations

5.1.1 The Elliptic Complex

It is a fact, which we will not prove, that fω : Cs → iΩ2
+ × Γ(V−) is a smooth map. Therefore, its differential

gives the linearization of the SW equations.

Lemma 5.4. For ω ∈ iL2
4(Λ2

+T
∗X) and (A,Φ) in the L2

5-configuration space Cs, the differential of fω is given by:

T(A,Φ)fω : iΩ1(X)× Γ(V+) iΩ2
+(X)× Γ(V−)

(a, ϕ) (2d+a− σ(Φ, ϕ)− σ(ϕ,Φ), D+
Aϕ+ γ(a)Φ)

8The last two items in this list are not covered by our definition, since these spaces are not those of sections of a vector bundle.
However, there are ways to extend the Sobolev space construction to these spaces also: in the case of G, for instance, one can obtain
the Sobolev space of sections of the line bundle C→ X and then just restrict to sections with unit length.

9See e.g. here for some more information.
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Proof. The domain and codomain are correct, sinceAs is an affine space over iΩ1(X) while Γ(V+) is a vector
space, as is the target space. Now consider a curve (A+ ta,Φ) through (A,Φ). Then we find

T(A,Φ)fω(a, 0) =
d

dt

∣∣∣∣
t=0

fω(A+ ta,Φ) =
d

dt

∣∣∣∣
t=0

(F+

Â+ta
− σ(Φ,Φ)− ω,D+

A+taΦ)

It is a fact which we will not explain that F+

Â+ta
= F+

Â
+ 2td+a (the factor 2 is surprising: It arises because

of some technicalities). Furthermore,

D+
A+taΦ =

∑
i

ei ·
(
∇Aei + ta(ei)

)
Φ = D+

AΦ + tγ(a)Φ

Thus we are led to conclude that
T(A,Φ)fω(a, 0) = (2d+a, γ(a)Φ)

Proceeding similarly it is not hard to show

T(A,Φ)fω(0, ϕ) = (−σ(Φ, ϕ)− σ(ϕ,Φ), D+
Aϕ)

Putting these results together yields the required result.

Let us now examine the “infinitesimal” (or linearized) action induced by Cs x G.

Lemma 5.5. Fix (A,Φ) ∈ Cs. The action Cs x G induces a map

g = iΩ0(X) T(A,Φ)Cs = iΩ1(X)× Γ(V+)

ξ (−dξ, ξΦ)

L(A,Φ)

where g is the Lie algebra of G, and T(A,Φ)Cs is the tangent space of Cs at (A,Φ).

Proof. We use the fact that exp(tξ) has tangent vector ξ at t = 0 to compute:

L(A,Φ)ξ =
d

dt

∣∣∣∣
t=0

(A,Φ) · exp(tξ) =
d

dt

∣∣∣∣
t=0

(A+ exp(tξ)d(exp(−tξ)), exp(tξ)Φ)

= (−dξ, ξΦ)

This leads into the following result.

Proposition 5.6. For fixed (A,Φ), we consider the composition

iΩ0(X) iΩ1 × Γ(V+) iΩ2
+(X)× Γ(V−)

L(A,Φ) T(A,Φ)fω

If D+
AΦ = 0, then for all ω ∈ iΩ2

+(X), the above is an elliptic complex with index (i.e. Euler characteristic10)
− 1

4

(
c21(Ls)− (2χ(X) + 3σ(X))

)
.

Proof. To show that we are dealing with a complex, we must show T(A,Φ)fω ◦L(A,Φ = 0. Using our previous
lemmata, we find for ξ ∈ iΩ0(X):

T(A,Φ)fω ◦ L(A,Φ)(ξ) = T(A,Φ)fω(−dξ, ξΦ) = (−2d+dξ − σ(Φ, ξΦ)− σ(ξΦ,Φ), D+
A(ξΦ)− γ(dξ)Φ)

Clearly d+dξ = 0 while

σ(Φ, ξΦ) + σ(ξΦ,Φ) = γ−1((Φ⊗ (ξΦ)†)0) + γ−1(((ξΦ)⊗ Φ†)0) = −ξσ(Φ,Φ) + ξσ(Φ,Φ)

10As usual, the Euler characteristic is defined to be the alternating sum of the dimensions of cohomology vector spaces.
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since ξ̄ = −ξ. Moreover,

D+
A(ξΦ) =

∑
i

ei · ((Leiξ)Φ + ξ∇eiΦ) =
∑
i

(ei · Leiξ)Φ + ξD+
AΦ = γ(dξ)Φ + ξD+

AΦ

Thus, if D+
AΦ = 0 we have a complex, since the first term cancels.

To compute the index, we need the symbol of this differential operator. Recall from the discussion of the
symbol (cf. section 4.1) that we pick a smooth function which vanishes at a given point. In this case, that
means that we only need to take into account the terms which feature derivatives.

In the case at hand, the highest order terms are:

iΩ0(X) iΩ1(X)× Γ(V+) iΩ2
+ × Γ(V−)

ξ (−dξ, 0)

(a, ϕ) (2d+a,D+
Aϕ)

This leads us to consider the separate (decoupled) complexes

iΩ0(X) iΩ1(X) iΩ2
+(X)

0 Γ(V+) Γ(V−)

−d d+

D+
A

These have finite dimensional cohomology groups and the direct sum of them yields the cohomology
groups of the total complex. Observe that the former is simply the the half-de Rham complex we dis-
cussed before: It has index 1

2 (χ(X) + σ(X)). The latter, on the other hand, has index simply given by
− indRD

+
A = −2 indCD

+
A (since D+

A is the second map). The Atiyah-Singer index theorem tells us that
indCD

+
A = 1

8 (c21(Ls)− σ(X)). Putting our results together, we find total (real) index

1

2
(χ(X) + σ(X))− 1

4
(c21(Ls)− σ(X)) =

1

4
(2χ(X) + 3σ(X)− c21(Ls))

as claimed.

Remark 5.7. It is a general that

1

4

(
c21(Ls)− (2χ(X) + 3σ(X))

)
= c2(V+)

This follows from

p1(Λ2
+(X)) = 2χ(X) + 3σ(X) = c21(V+)− 4c2(V+) = c21(Ls)− 4c2(V+)

This is discussed in exercise 8.3.

5.1.2 Implicit Function Theorem for Banach Manifolds

Here, we proceed without proofs, simply quoting some facts from the theory of Banach manifolds. Let
f : X → Y be a smooth Fredholm map between Banach manifolds, i.e. Txf is Fredholm for all x ∈ X . Now
let x0 ∈ X , y0 = f(x0) ∈ Y . We also define K = ker Tx0

f , and C = coker Tx0
f . Then there exist local charts

(U, κ) and (V, κ′) around x0 and y0 such that

κ : U → B ⊕K, mapping x0 7→ 0

κ′ : V → B ⊕ C , mapping y0 7→ 0

where B is the model Banach space for X and Y . In these charts, F = κ′ ◦ f ◦κ−1 : B⊕K → B⊕C is given
on an open set W ⊂ B ⊕K by F (b, k) = (b, ψ(b, k)) ∈ V ⊕ C, where ψ : W → C, (b, k) 7→ ψ(b, k) =: ψb(k) is
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a smooth map. Then we have f−1(y0) ∼= F−1(0, 0) ∼= ψ−1
0 (0). The map ψ0 : W ′ ⊂ K → C is an example of a

Kuranishi map. If C = 0, then f−1(y0) is homeomorphic to an open neighborhood of 0 in K. The conclusion
is an analog of the implicit function theorem, i.e. in a neighborhood of x0, f−1(y0) is a smooth manifold of
dimension equal to the dimension of K.

Definition 5.8. For (A,Φ) ∈ Zω , let Hi
(A,Φ) be the ith cohomology group of the elliptic complex (from

proposition 5.6). Its index is dimH0
(A,Φ) − dimH1

(A,Φ) + dimH2
(A,Φ).

Our discussion in the previous section shows that the index is independent of the choice of (A,Φ), though
the individual cohomology groups may well depend on this choice.

Lemma 5.9. Let X be CCOS. Then

H0
(A,Φ)

∼= g =

{
0 if Φ 6≡ 0

R if Φ ≡ 0

Proof. ξ ∈ H0
(A,Φ) ⇔ L(A,Φ)ξ = (0, 0). This means that dξ = 0 and ξΦ = 0. Thus, ξ must be (locally, hence

globally) constant and if Φ ≡ 0 there is no further condition. If Φ 6≡ 0, we see H0
(A,Φ) = 0.

Let us assume for now that (A,Φ) is an irreducible solution of the SW equations, i.e. H0
(A,Φ) = 0. Let S

be a local slice for the G-action on Cs around (A,Φ): This means that a neighborhood of (A,Φ) admits a
smoothly embedded (closed) Hilbert submanifold S and the neighborhood is diffeomorphic to S × G (i.e.
we can picture S as a transverse submanifold to the G-orbits).

Consider fω|S : S → iΩ2
+(X)×Γ(V−). This is a Fredholm map between Banach spaces, and a neighborhood

of [A,Φ] ∈Mω is equal to (fω|S)−1(0). There also exists a Kuranishi map ψ : H1
(A,Φ) → H2

(A,Φ), which makes
sense since

H1
(A,Φ) = ker T(A,Φ)fω/ imL(A,Φ) = ker T(A,Φ)

(
fω|S

)
H2

(A,Φ) = coker T(A,Φ)fω = coker T(A,Φ)

(
fω|S

)
Now assume H2

(A,Φ) = 0 as well—transversality of fω to (0, 0) (to be established in theorem 5.38) ensures
that this holds for a neighborhood of (A,Φ) ∈ Zω . Then an open neighborhood of [A,Φ] inMω looks like an
open neighborhood of 0 in H1

(A,Φ); in particular, around [A,Φ],Mω is a smooth manifold with dimension
equal to the dimension of H1

(A,Φ). Our discussion of the index of the elliptic complex shows:

Proposition 5.10. If H0
(A,Φ) = 0 = H2

(A,Φ), a neighborhood of [A,Φ] ∈Mω is a smooth manifold of dimension

dimexpMω :=
1

4

(
c21(Ls)− (2χ(X) + 3σ(X))

)
We call dimexpMω the “expected dimension” of the moduli space.

In the reducible case, the analogous result is:

Proposition 5.11. If H0
(A,Φ)

∼= R, H2
(A,Φ) = 0, then a neighborhood of [A,Φ] ∈ Mω is the quotient of a smooth

manifold of dimension dimexpMω + 1 by a U(1)-action.

Proof. We still have the Kuranishi mapψ : H1
(A,Φ) → 0 and the constant gauge transformations (i.e. elements

of G(A,Φ)) act on As × Γ(V+) and iΩ2
+(X) × Γ(V−). The actions descends to a U(1)-action on H1

(A,Φ) and
H2

(A,Φ). The index of the elliptic complex is now given by

dimH0
(A,Φ) − dimH1

(A,Φ) + dimH2
(A,Φ) = 1− dimH1

(A,Φ)
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Hence
dimH1

(A,Φ) = 1 +
1

4

(
c21(Ls)− (2χ(X) + 3σ(X))

)
= 1 + dimexpMω

Thus, a neighborhood of Mω is diffeomorphic to a U(1)-quotient of an open subset of H1
(A,Φ), which has

dimension 1 + dimexpMω .

5.2 The Structure of the Gauge Group

Definition 5.12. We define the degree of a map

deg : G H1(X;Z)

u u∗µ

where µ is a fixed generator of H1(S1;Z).

Proposition 5.13. [X,S1] ∼= H1(X;Z)

Proof. Homotopy classes of maps X → S1 are in bijection with maps π1(X) → Z, but since Z is Abelian
and H1(X) is the Abelianization of π1(X), they factor through H1(X), hence are in bijection with maps
H1(X)→ Z. But those are precisely elements of H1(X;Z).

Corollary 5.14. deg u = 0 if and only if u ' const.

Definition 5.15. We give the subgroup of null-homotopic elements of G a special name:

G0 = ker deg = {u ∈ G| deg u = 0⇔ u ' const.}

The following is an elementary result from covering theory:

Lemma 5.16. deg u = 0 if and only if u = eif with f : X → R globally defined.

Proof. F : X → S1 lifts to R, i.e. F = eif for f : X → R, if and only if F∗π1(X) is trivial in π1(S1) ∼=
H1(S1;Z), i.e. degF = 0.

Corollary 5.17. G0 is the connected component of 1 ∈ G and G/G0
∼= H1(X;Z) = Zb1(X), where we used that

TorH1(X;Z) ∼= TorH0(X;Z) = 0.

Consider the following two subgroups of G0:

• U(1) = {eic | c ∈ R}.

• G⊥ := {eif | f ∈ L2
6(X),

∫
X
fvolg = 0}.

Proposition 5.18. There is an isomorphism

U(1)× G⊥ G0

(eic, eif ) ei(c+f)

Proof. Let h = eif and set λh = exp
(

i
volX

∫
X
fvolg

)
. Note that this is well-defined, since if eif = eif

′
then

f = f ′ + 2πik for k ∈ Z, hence
∫
X
f ′volg =

∫
X
fvolg + 2πikvolX . This allows us to give an inverse of the

map: G0 → U(1)× G⊥, given by h 7→ (λh, λ
−1
h h). Note that

λ−1
h h = exp

(
i
(
f − 1

volX

∫
X

fvolg

))
=: eif

′
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and ∫
X

f ′volg =

∫
X

f − 1

volX
· volX

∫
X

fvolg = 0

as required.

Definition 5.19. u ∈ G is called harmonic if α = udu−1 is harmonic. The set of harmonic maps will be
denoted by Gh.

Lemma 5.20. Gh is a subgroup of G.

Proof. Let u, v ∈ Gh. Then (uv)d((uv)−1) = udu−1 + vdv−1. Since uu−1 is constant, udu−1 = −u−1du. Thus,
Gh is closed under multiplication and inversion.

Note that 0 = d2(uu−1) = 2(du)(du−1) = 2dα. Hence, for harmonicity one needs only check d∗α = 0.

Proposition 5.21. For an arbitrary u ∈ G, there exists an (up to a constant) unique fu : X → R such that ue−ifu
is harmonic.

In the proof, we will need to use the Green’s operator for ∆ : Ωk(X) → Ωk(X). Let H : Ωk(X) → Hk(X) be
the orthogonal projection.

Theorem 5.22. There exists a Green’s operator G for ∆, given by G : Ωk(X)→ (Hk(X))⊥ ⊂ Ωk(X), which maps
α to the unique ω ∈ (Hk(X))⊥ such that ∆ω = α−H(α).

Remark 5.23. The Green’s operator has the properties H + ∆G = Id = H +G∆, and HG = GH .

Proof of Proposition. Set β = udu−1 ∈ Ω1(X) and define a function f = iG(d∗β). We claim that H(d∗β) = 0.
To see this, let R 3 c ∈ H0(X). Then clearly 〈d∗β, c〉L2 = 〈β,dc〉L2 = 0, i.e. d∗β ∈ (H0(X))⊥: β has no
component inH0(X).

Thus, ∆f = i(∆G+H)(d∗β) = id∗β. We claim that v = ue−if is harmonic, i.e. we have a harmonic form

vdv−1 = udu−1 + deif = udu−1 + idf = β + idf

As remarked before, all we need to do is check d∗(vdv−1) = 0:

d∗(vdv−1) = d∗β + id∗df = d∗β − d∗β = 0

Indeed, vdv−1 is harmonic. Uniqueness up to constant follows from our definition of f .

After modifying this function by an appropriate constant, we obtain:

Corollary 5.24. Given an arbitrary gauge transformation u : X → S1, there exists a unique fu : X → R such that∫
X
fuvolg = 0 and ue−if is harmonic.

Corollary 5.25. The map

G⊥ × Gh G

(eif , g) eifg

is an isomorphism with inverse

G G⊥ × Gh

u (eifu , ue−ifu)
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Recalling that G0 = U(1)×G⊥ and G/G0
∼= H1(X;Z), we conclude H1(X;Z) ∼= G/G0

∼= Gh/U(1). We obtain
a short exact sequence

1 U(1) Gh H1(X;Z) 0
deg

of Abelian groups (Z-modules). It ends in a vector space, i.e. a free module, and such a short exact sequence
always splits. To show this, it suffices to construct a section of deg, i.e. a map v : H1(X;Z) → Gh such that
deg ◦v = Id. The proof that this is always possible if the sequence ends in a vector space is not hard: Take a
basis {ej} of the vector space and define v(ej) to be any lift of ej : Extend by linearity. Adopting the notation
Ghv for the image of H1(X;Z) under v, we then obtain

Gh = Ghv ×U(1) ∼= H1(X;Z)×U(1) = Zb1(X) ×U(1)

5.3 The Structure of the Base Space

We now turn our attention to B ∼= Cs/G. Using our discussion of G, we will do so by studying Cs/G⊥ and
then moving on to consider (Cs/G⊥)/Gh.

Theorem 5.26. The action of G⊥ on Cs admits a global slice S, i.e. Cs is diffeomorphic to S × G⊥.

Proof. Fix a U(1)-connection A0. Let S be the affine space

S =
{

(A0 + a,Φ) ∈ Cs
∣∣a ∈ iΩ1(X) with d∗a = 0

}
We may consider d∗a as a “gauge fixing condition”, since

e : G⊥ × S Cs
(eif , (A0 + a,Φ)) (A0 + a− idf, eifΦ)

is a diffeomorphism with inverse

e−1 : Cs G⊥ × S

(A0 + b,Ψ) (e−G(d∗b), (A0 + b− d(G(d∗b)), eG(d∗b)Ψ))

We note that e−1 is defined in a sensible way: eif ∈ G⊥ if
∫
X
fvolg = 0, which is equivalent to H(f) = 0

since f ∈ (H0(X))⊥ if and only if 〈f, g〉L2 = 0 for every constant g ∈ H0(X), but constant functions make
up H0(X). Thus, to see that exp(−G(d∗b)) ∈ G⊥, we just need HG(d∗b)) = 0, but HG = GH and therefore
it suffices that d∗b ∈ (H0(X))⊥, which we already established.

Similar reasoning shows that d∗(b− d(G(d∗b))) = d∗b− (H + ∆G(d∗b)) = 0. Now, one should check that e
and e−1 are indeed inverse to each other. this is left as an exercise to the reader.

Hence, Cs/G⊥ ∼= S, an affine space. We need to now consider S/Gh: the group Gh does not act freely on S,
but it does act freely on S∗ := S ∩ C∗s .

Theorem 5.27. The quotient space B∗ := C∗s/G = S∗/Gh is a smooth Hilbert manifold with the weak homotopy type
of CP∞ × T b1(X), where T b1(X) is the torus H1(X;R)/H1(X;Z).

Sketch of Proof. Gh ∼= Ghv × U(1) acts freely on S∗ and Ghv acts properly discontinuously, hence S∗/Ghv is
Hausdorff. Compactness of the remaining U(1) then guarantees that S∗/Gh is Hausdorff as well.

Remark 5.28. SinceMω ⊂ B∗ is, near an irreducible configuration, a subspace of B∗, it is also Hausdorff
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Since there exist explicit local slices for Gh y S∗, B is a Hilbert manifold. S is, as an affine space, con-
tractible. But what about S∗? We claim without proof that S \ S∗ has infinite codimension in S and that
this implies that S∗ is weakly contractible. It follows that B∗ = S∗/Gh is a weak classifying space for
Gh = U(1) ×H1(X;Z), which has classifying space CP∞ × T b1(X). This means that B∗ also has this weak
homotopy time.

Corollary 5.29. Let B̃∗ = S∗/Ghv . Then the projection B̃∗ → B∗ is a principal S1-bundle.

As another consequence of the theorem, note that since the Euler class e ∈ H2(B∗;Z) restricted to CP∞ is a
generator of H2(B∗;Z), the cohomology ring of B∗ is

H∗(B∗;Z) = Z[e]⊗H∗(T b1(X);Z) = Z[e]⊗ Λ∗[a1, . . . , ab1(X)]

5.4 Reducible Solutions and the Parameter Space

Recall that the reducible solutions are of the form (A, 0) ∈ Zω . The Dirac equation then becomes trivial:
We just need to solve the curvature equation F+

Â
= ω. Since we want to avoid reducible solutions, we are

interested in the following question: Given some (parameter) ω ∈ iΩ2
+(X), does there exist a connection A

with FÂ = ω?

Lemma 5.30. There exists a well-defined pairing

H2
dR(X)×H2

+(X) R

([µ], τ) 〈[µ], τ〉L2 =

∫
X

µ ∧ ∗τ =

∫
X

µ ∧ τ

Proof. Adding an exact form dα to µ does not change its integral, since dα ∧ τ = d(α ∧ τ).

Now let g be a Riemannian metric on X , and L→ X a complex line bundle.

Definition 5.31. We setWg,L = {ω ∈ iΩ2
+(X) | |〈ω + 2πc1(L),H2

+(X)〉 ≡ 0}.

Lemma 5.32. Wg,L is an infinite-dimensional affine subspace of iΩ2
+(X) of codimension b+2 (X) = dimH2

+(X).

Proof. Being an element ofWg,L imposes b+2 (X) independent conditions on ω.

Theorem 5.33. For a given complex line bundle L→ X and a Riemannian metric g there exists a U(1)-connection
A on L with F+

A = ω if and only if ω ∈ Wg,L.

The proof of this theorem relies on the following result.

Lemma 5.34. Let β ∈ Ω2
+(X). Then there exists some α ∈ Ω1(X) with β = (dα)+ if and only if 〈β,H2

+(X)〉 ≡ 0.

Proof. Using Hodge decomposition as in proposition 3.55, one sees that Ω2
+(X) = H2

+(X)⊕ (dΩ1(X))+.

Proof of Theorem. Let A0 be any connection on L. Then A = A0 + a where a ∈ iΩ1(X) has curvature
FA = FA0

+ da + a ∧comp a = FA0
+ da since a ∧ a is zero for a form with coefficients in a commutative

ring (e.g. in EndL = iR). Therefore F+
A = F+

A0
+ d+a and F+

A = ω precisely if we can solve the equation
d+a = ω − F+

A0
= (ω − F+

A0
)+.

By the previous lemma, this is possible precisely if 〈ω−FA0
,H2

+(X)〉L2 = 0 (we added back the anti-self dual
part since it does not contribute in any case). From Chern-Weil theory, we know that [FA0 ] = −2πic1(L),
hence the ω-perturbed curvature equation has a solution if and only if 〈ω + 2πic1(L),H2

+(X)〉 = 0, which
means that ω ∈ Wg,L.
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The corollaries of the theorem above can be best understood in light of the following definition.

Definition 5.35. For a Spinc-structure s on X with characteristic line bundle L, we define the wall as the set
Ws = {(g, ω) ∈ P | ω ∈ Wg,L}. It is an infinite-dimensional submanifold of P of codimension b+2 (X). The
connected components of P \Ws are called chambers.

Corollary 5.36. The SW equations for parameters (g, ω) ∈ P have a reducible solution if and only if (g, ω) ∈ Ws.

Corollary 5.37. Depending on the value of b+2 (X), we have the following cases.

(i) If b+2 (X) = 0, then for all (g, ω) ∈ P , there are reducible solutions (more about this in the proof of Donaldson’s
theorem).

(ii) In case b+2 (X) = 1, one generically finds oneself outside the wall, but parameters (g1, ω1) and (g2, ω2) can only
be connected by a path avoiding the wall if they are in the same chamber.

(iii) For b+2 (X) ≥ 2, paths transverse to the wall are actually disjoint from the wall, hence parameters in the com-
plement of the wall can always be connected by a curve avoiding the wall, i.e. there is only one chamber.

We will see later that this corollary implies that the SW invariants are independent of parameters if b+2 (X) ≥
2. For b+2 (X) = 1, one has to deal with so-called “wall-crossing” phenomena.

5.5 Transversality and the Moduli Space

In this section, we build on the discussion of section 5.1.2 where, under the assumption H2
(A,Φ) = 0, we

showed thatM∗ω locally looks like a manifold of dimension c2(V+). In this section, we establish:

Theorem 5.38. For any fixed Riemannian metric g on X , and a generic ω ∈ iΩ2
+(X), the irreducible part of the

moduli spaceM∗ω = (Zω ∩ C∗s )/G, is either a smooth manifold of dimension c2(V+), or empty.

If we vary the self-dual form that appears in the perturbed curvature equation, we get a collection of moduli
spaces; it is useful to collect all this information into a single object, which leads the following definition:

Definition 5.39 (Parametrized Moduli Space). We define the parametrized moduli space as

M =
{

([A,Φ], ω) ∈ B × iΩ2
+(X)

∣∣ fω(A,Φ) = 0
}

We also define its irreducible part as

M∗ =M∩
(
B∗ × iΩ2

+(X)
)

If π : M∗ → iΩ2
+(X) is the canonical projection, observe thatM∗ω = π−1(ω). The use of the parametrized

moduli space is demonstrated by the following theorem:

Theorem 5.40 (Transversality).

(i) M∗ is a Banach manifold.

(ii) The projection π :M∗ → iΩ2
+(X) is Fredholm, with index c2(V+).

(iii) The set of regular values ω ∈ iΩ2
+(X) of π is generic. For a regular value ω,M∗ω = π−1(ω) is either a smooth

manifold of dimension c2(V+), or empty.

Proof.
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(i) Pick a local slice S∗ for the action G y C∗s around (A0,Φ0) ∈ Zω . Consider the map

F : S∗ × iΩ2
+(X) iΩ2

+ × Γ(V−)

(A,Φ, ω) (F+

Â
− σ(Φ,Φ)− ω,D+

AΦ)

It is clear from lemma 5.4 that its differential is given by

T(A,Φ,ω)F (a, ϕ, τ) = (2d+a− σ(Φ, ϕ)− σ(ϕ,Φ)− τ,D+
Aϕ+ γ(a)Φ)

Our goal is to show that if (A,Φ) solve the ω-perturbed monopole equations (i.e. F (A,Φ, ω) = 0),
T(A,Φ,ω)F is surjective.

Let (η, ψ) ∈ iΩ2
+(X)× Γ(V−) be orthogonal to the image of T(A,Φ,ω)F , i.e.∫

X

(〈2d+a− σ(Φ, ϕ)− σ(ϕ,Φ)− τ, η〉+ 〈D+
Aϕ+ γ(a)Φ, ψ〉)volg = 0

for every (a, ϕ, τ). Our task is to show that (η, ψ) = (0, 0). Note that the second term does not depend
on τ , though the first one does. Since we may choose τ at will, η must vanish. We are left with the
equation ∫

X

〈D+
Aϕ,ψ〉volg =

∫
X

〈γ(a)Φ, ψ〉volg

Now note that the right-hand side does not depend on ϕ, hence∫
X

〈D+
Aϕ,ψ〉volg =

∫
X

〈ϕ,D−Aψ〉volg

does not depend on ϕ. Since we may choose ϕ arbitrarily, we conclude thatD−Aψ = 0. Finally, we have∫
X

〈γ(a)Φ, ψ〉volg = 0

for any a ∈ iΩ1(X). By assumption, Φ 6≡ 0. Thus, consider a point p such that Φ(p) 6= 0. Choose
a ∈ Ω1(X) locally such that γ(a(p))Φ(p) = ψ(p). If ψ(p) 6= 0, the integrand will be positive near p,
and using a cutoff function we can force the integral to be strictly positive. This is a contradiction,
hence ψ(p) = 0. Since Φ is nonzero on an open neighborhood U of p, we conclude ψ|U ≡ 0. A general
property of elliptic operators (such as D−A ) now implies that ψ ≡ 0 since D−Aψ = 0. Thus, T(A,Φ,ω)F
is surjective and (0, 0) is a regular value of F . As the preimage of a regular value, M∗ is a Banach
manifold.

(ii) We will show that (for [(A,Φ)] ∈ M∗—we will omit the square brackets in the rest of this proof) the
kernel and cokernel of T(A,Φ,ω)π|M∗ (meaning we consider only tangent vectors toM∗) coincide with
the kernel and cokernel of T(A,Φ)fω|S = T(A,Φ)fω|S∗ (since (A,Φ) ∈ C∗s , S = S∗ near (A,Φ)), which in
turn are simply H1

(A,Φ) and H2
(A,Φ) (cf. lemma 5.9).

Clearly T(A,Φ,ω)F = T(A,Φ)fω|S − (τ, 0), hence

T(A,Φ,ω)M∗ = ker T(A,Φ,ω)F = {(a, ϕ) | T(A,Φ)fω(a, ϕ) ∈ TS∗ = (τ, 0)}

and T(A,Φ,ω)π(a, ϕ, τ) = τ , therefore (a, ϕ, τ) ∈ ker T(A,Φ,ω)π|M∗ precisely if τ = 0 and (a, ϕ) ∈
kerT(A,Φ)fω|S (the latter condition simply expresses that (a, ϕ, τ) ∈ T(A,Φ,ω)M∗). We conclude that
ker T(A,Φ,ω)π|M∗ ∼= ker T(A,Φ)fω|S∗ ∼= H1

(A,Φ).

Given (η, ψ) ∈ iΩ2
+(X) × Γ(V−), we can use the fact that (0, 0) is a regular value of F to see that we

can always find (a, ϕ, τ) such that T(A,Φ)fω(a, ϕ) = (η+ τ, ϕ). Therefore, any element of coker T(A,Φ)fω
is of the form (µ, 0). This means that the composite map

κ : iΩ2
+(X) iΩ2

+ × Γ(V−) H2
(A,Φ)

µ (µ, 0) [(µ, 0)]

proj
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is surjective. Thus, H2
(A,Φ)

∼= iΩ2
+/ kerκ. The kernel of κ consists of elements represented by (µ, 0) ∈

im T(A,Φ)fω|∗S , which is equivalent to the existence of some tuple (a, ϕ, µ) ∈ T(A,Φ,ω)M∗. But this pre-
cisely means µ ∈ im T(A,Φ,ω)π|µM∗ . Thus, kerκ ∼= im T(A,Φ,ω)π|µM∗ and H2

(A,Φ)
∼= coker T(A,Φ,ω)π|M∗ .

(iii) This is a result in the spirit of Sard’s theorem; we will not prove it.

5.5.1 Compactness of the Moduli Space

When talking about compactness of the moduli space, we will always mean sequential compactness, i.e. any
sequence has a convergent subsequence. The proof of this requires the following deep result, which we do
not prove:

Theorem 5.41 (Sobolev Embedding). Let X be a compact n-manifold. Then

• There exists an embedding Lpj+m(X) ⊂ Cj(X) if mp ≥ n.

• This embedding is compact if mp > n.

Corollary 5.42. LetX be a compact 4-manifold. Then there exists a compact embedding L2
k(X) ⊂ Ck−3(X). Hence,

every bounded sequence in L2
k(X) has a convergent subsequence in Ck−3.

Proof. Here, n = 4, p = 2 and m = 3.

The precise statement that we will prove is:

Theorem 5.43. Let (Ai,Φi) be a sequence of L2
4 solutions to the SW equations. Then there exists a sequence ui of L2

5

gauge transformations such that ui(Ai,Φi) is a bounded sequence in L2
k for all k. Hence the solutions ui(Ai,Φi) are

C∞ and there is a subsequence that converges in the C∞ topology to a C∞ solution (A,Φ) of the monopole equations.
In particular, the moduli space is sequentially compact in the C∞ topology.

We start by proving some pointwise bounds:

Lemma 5.44. The Laplacian of |Φ|2 can be expressed as

1

2
∆|Φ|2 = Re〈∇∗A∇AΦ,Φ〉 − |∇AΦ|2

Proof. In a local orthonormal frame for TX , and f ∈ C∞(M), the Laplacian is given by∇f = −
∑
i∇2

ei,eif ,
where ∇2

X,Y = ∇X∇Y f −∇∇XY f = LXLY f − L∇XY f . Using f = |Φ|2, we find:

1

2
∇|Φ|2 = −1

2
∇2
ei,ei |Φ|

2 = −
∑
i

(
∇ei Re(〈∇AeiΦ,Φ〉)− Re(〈∇A∇eieiΦ,Φ〉)

)
= −

∑
i

Re(〈∇Aei∇
A
eiΦ,Φ〉+ 〈∇AeiΦ,∇

A
eiΦ〉 − 〈∇

A
∇eiei

Φ,Φ〉)
)

All that is left to show is that the first and last term combine as follows:

−
∑
i

(
Re(〈∇Aei∇

A
eiΦ,Φ〉 − 〈∇

A
∇eiei

Φ,Φ〉)
)

= Re〈∇∗A∇AΦ,Φ〉

But this just the real part of the statement of lemma 4.10.

This yields a useful bound on |Φ|2:

Lemma 5.45. Consider an L2
4-solution (A,Φ) to the monopole equations and let p ∈ X be a maximum of |Φ|2. Then

|Φ(p)|4 ≤ −sg(p)|Φ(p)|2.
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Proof. At a maximum, ∆|Φ|2 ≥ 0. Using our lemma, we find (in p):

0 ≤ Re〈∇∗A∇AΦ,Φ〉 − |∇AΦ|2 ≤ Re〈∇∗A∇AΦ,Φ〉

The Weitzenböck formula (theorem 4.8) tells us

0 ≤ Re(〈D−AD
+
AΦ,Φ〉 − 1

2
〈γ(F+

Â
)Φ,Φ〉)− 1

4
sg|φ|2

Using that (A,Φ) is a solution to the SW equations as well as lemma 4.23 turns this into:

0 ≤ −1

4
sg|Φ|2 −

1

2
〈(γ(σ(Φ,Φ))Φ,Φ) = −1

4
sg|Φ|2 − 2|σ(Φ,Φ)|2 = −1

4
(sg|Φ|2 + |Φ|4)

whence we obtain |Φ(p)|4 ≤ −sg(p)|Φ(p)|2.

Corollary 5.46. If sg ≥ 0 everywhere on X , then Φ ≡ 0, i.e. every solution to the monopole equations is reducible.
If sg < 0 somewhere on X , then

|Φ|2 ≤ max
p∈X
−sg(p) > 0

Proof. In the first case, the left hand side is non-negative while the right hand side is non-positive: Both
must therefore vanish. The second bound holds in the point p, which is a maximum of |Φ|2. Therefore it
holds everywhere.

This is a C0-bound on |Φ|2. Notice that since |F+

Â
| = |σ(Φ,Φ)| = |Φ|2/2

√
2 (by the curvature equation and

lemma 4.23), we automatically obtain a C0-bound for |F+

Â
|.

Now, we look for analogous results for the perturbed SW equations. Let p ∈ X be a maximum of |Φ|2 (with
(A,Φ) a solution); going through the same steps, we obtain an extra term:

0 ≤ 1

2
∆|Φ|2 ≤ −1

4
(sg|Φ|2 + |Φ|4)− 1

2
〈γ(ω)Φ,Φ〉

Using lemma 4.23 and the Cauchy-Schwarz inequality, we find

0 ≤ −1

4
(sg|Φ|2 + |Φ|4)− 2〈ω, σ(Φ,Φ)〉 ≤ −1

4
(sg|Φ|2 + |Φ|4) + 2|ω||σ(Φ,Φ)| = −|Φ|

2

4
(sg + |Φ|2 − 2

√
2|ω|)

We find that in p, |Φ|4 ≤ −|Φ|2(sg − 2
√

2|ω|). This shows:

Proposition 5.47. Let sg,ω = minp∈X{0, sg(p) − 2
√

2|ω(p)|} (notice that it depends only on (g, ω) ∈ P), and let
(A,Φ) ∈ Zω . Then we have the pointwise bounds

|Φ|2 ≤ −sg,ω

|F+

Â
| ≤ − 1

2
√

2
sg,ω + max

p∈X
|ω|

where we used that ω ∈ L2
3, which embeds in C0, to see that it assumes its maximum.

We now turn to integral bounds.

Proposition 5.48. Let (A,Φ) be a solution to the monopole equations. Then

‖Φ‖2L4 ≤
∥∥∥−sg + 2

√
2|ω|

∥∥∥
L2∥∥∇AΦ

∥∥
L2 ≤

1

2

∥∥∥−sg + 2
√

2|ω|
∥∥∥
L2∥∥∥F+

Â

∥∥∥
L2
≤ 1

2
√

2

∥∥∥−sg + 2
√

2|ω|
∥∥∥
L2

+ ‖ω‖L2
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Proof. The first bound follows from the Weitzenböck formula and the usual spinor identities:

0 =

∫
X

〈D−AD
+
AΦ,Φ〉volg =

∫
X

(|∇AΦ|2 +
1

4
sg|Φ|2 +

1

2
〈γ(F+

Â
)Φ,Φ〉)volg

=

∫
X

(|∇AΦ|2 +
1

4
sg|Φ|2 +

1

4
|Φ|4 + 2〈ω, σ(Φ,Φ)〉)volg

Discarding the first term and using the Cauchy-Schwarz inequality twice (in different incarnations), we
have: ∫

X

|Φ|4volg ≤ −
∫
X

(sg|Φ|2 + 8〈ω, σ(Φ,Φ)〉)volG

≤
∫
X

(−sg|Φ|2 + 8|ω||σ(Φ,Φ)|)volg =

∫
X

|Φ2|(−sg + 2
√

2|ω|)volg

≤

(∫
X

|Φ|4volg

)1/2(∫
X

(−sg + 2
√

2|ω|)2volg

)1/2

Thus, we obtain ∥∥Φ
∥∥2

L4 ≤
∥∥− sg + 2

√
2|ω|

∥∥
L2

as promised. For the second inequality, discard the |Φ|4-term instead of the ∇AΦ-term and proceed analo-
gously. For the last bound, we once again need Cauchy-Schwarz:∫

X

|F+

Â
|2volg =

∫
X

|σ(Φ,Φ) + ω|2volg =

∫
X

(1

8
|Φ|4 + 2〈σ(Φ,Φ), ω〉+ |ω|2

)
volg

≤
∫
X

(1

8
|Φ|2 +

1√
2
|Φ|2|ω|+ |ω|2

)
volg =

∫
X

( 1

2
√

2
|Φ|2 + |ω|

)2

volg =
∥∥∥ 1√

8
|Φ|2 + |ω|

∥∥∥2

L2

Taking the square root and using the triangle inequality as well as our first bound, we obtain the required
result:

‖F+

Â
‖L2 ≤ 1

2
√

2
‖ − sg + 2

√
2|ω|‖L2 + ‖ω‖L2

We are still far from completing our theorem but we can already draw some important conclusions:

Corollary 5.49. Let X be a closed, oriented 4-manifold. For fixed parameters (g, ω) ∈ P , there exist at most finitely
many Spinc-structures on X such thatMω 6= ∅ and dimexpMω ≥ 0.

Proof. Recall that dimexpMω ≥ 0 is equivalent to c21(Ls) ≥ 2χ(X) + 3σ(X). We saw in the proof of propo-
sition 4.22 that Chern-Weil theory implies 4π2c21(Ls) = ‖F+

Â
‖2L2 − ‖F−

Â
‖2L2 and therefore our L2-bound on

F+

Â
implies an L2-bound from above on F−

Â
, depending only on (g, ω).

Now, we have bounded c21(Ls)R ∈ H2(X;R) using a bound that depends only on (g, ω). Since c1(Ls) ∈
H2(X;Z) and the free part of H2(X;Z) ⊂ H2(X;R) is a lattice while the torsion is finite, only finitely
different first Chern classes are possible.

Corollary 5.50. Assume b+2 (X) > 0, and (g, ω) ∈ P is generic. Then there are at most finitely many Spinc-
structures withMω 6= ∅.

Proof. Under the given assumptions, there are no reducible solutions, and solutions are transverse zeros of
fω . HenceMω is a smooth manifold and dimexpMω ≥ 0.

To establish compactness we need bounds on ‖A‖L2
k
, and ‖Φ‖L2

k
(up to gauge transformation) that depend

only on (X, g) and k. To begin with note that all of the bounds obtained above depend only on (X, g) in the
case of the unperturbed SW equations; we now restrict to this case.
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The three following results are “black boxes”, i.e. outside the scope of this lecture, but they are nevertheless
needed to prove theorem 5.43. In the following, we will use c, c′ to denote several (different) constants
whose values are of no importance.

Theorem 5.51 (Elliptic Estimate). The Dirac operator is elliptic and satisfies

‖Φ‖Lpk+1
≤ c

(
‖D+

A0
Φ‖Lpk + ‖Φ‖Lp

)
Theorem 5.52. Let P denote the L2-projection onto the kernel of a linear elliptic first order differential operator L
(for our purposes, L = DA0

and L = d⊕ d∗ are relevant). Then

‖Φ− PΦ‖Lpk+1
≤ c‖LΦ‖Lpk

Theorem 5.53 (Gauge Fixing). Let E → X be a complex line bundle and Â0 a fixed, smooth U(1)-connection. Up
to L2

k+2 gauge transformations we can write an arbitrary L2
k+1 connection Â as Â = Â0 + a, with d∗a = 0 and

‖a‖2L2
k+1
≤ c

∥∥∥F+

Â

∥∥∥2

L2
k

+ c′

The first monopole equation can be rewritten as

D+
A0

Φ = −γ(a)Φ

and the above theorems then allow us to deduce the following important result:

Corollary 5.54 (Bootstrapping). Suppose a, Φ are bounded in L2
3 by constants c, c′. Then they are bounded by

c(k), c′(k) in L2
k for all k ≥ 3.

Proof. A Sobolev multiplication theorem asserts that the multiplication L2
k × L2

k → L2
k for every k ≥ 3 is

bounded. Assuming L2
3-bounds on a,Φ, we obtain bounds on γ(a)Φ and σ(Φ,Φ) and therefore on D+

A0
Φ

and F+

Â
. Using the elliptic estimate, Φ is then also bounded in L2

4. By gauge fixing, a is bounded in L2
4 as

well. Now we can go through the same steps and inductively obtain bounds for any k ≥ 3.

All that is left to establish compactness of the moduli space is:

Theorem 5.55. There exist constants c, c′ depending only on (X, g) such that any solutions of the SW equations is
gauge equivalent to a solution (A,Φ) with A = A0 + a, d∗a = 0 and

‖a‖L2
3
≤ c

‖Φ‖L2
3
≤ c′

To prove it, we start with the observation that our L2-bound on F+

Â
yields an L2

1-bound on a. To get an
L2

2-bound, we use:

Proposition 5.56. There exists a constant c depending only on (X, g) such that for any (A,Φ) ∈ Zω ,
∥∥FÂ∥∥2

L2
1
≤ c.

Proof. Using F+

Â
= σ(Φ,Φ), combined with the fact that we have both an L∞-bound on Φ and an L2-bound

on ∇AΦ, we get an L2-bound on ∇F+

Â
, where ∇ is induced by the Levi-Cività connection. Thus, we have

an L2-bound on dF+

Â
.

We have now established:

Corollary 5.57. There exist a constant c depending only on (X, g) such that any (A,Φ) ∈ Zω is gauge equivalent
to a solution (A,Φ) with A = A0 + a, d∗a = 0, and ‖a‖2

L2
2
≤ c.
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Proof of Theorem. There is an L2
1-bound on Φ since we have L2-bounds on Φ, a and ∇AΦ. Now we use

Sobolev multiplication to see that L2
2 × L∞ → L4, (a,Φ) 7→ −γ(a)Φ = D+

A0
Φ is bounded. The orthogonal

projection theorem for D+
A0

then yields an L4
1-bound on Φ.

Now, we use the same steps to get different Lpk bounds. Every time, we need a Sobolev multiplication
theorem. First, we have:

L2
2 × L4

1 L3
1

(a,Φ) −γ(a)Φ

which yields an L3
2-bound on Φ. Then

L2
2 × L3

2 L2
2

(a,Φ) −γ(a)Φ

gives an L2
3-bound. Finally, we find an L2

3-bound on F+

Â
by using the map

L2
3 × L2

3 L2
3

(Φ,Φ) σ(Φ,Φ) = F+

Â

This establishes the L2
3-bound on a (which is an element of L2

4(iΩ1(X))).
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6 Seiberg-Witten Theory

6.1 Donaldson’s Theorem

6.1.1 Proof using Seiberg-Witten Theory

Donaldson’s theorem was a landmark discovery in the theory of 4-manifolds. It highlights the differences
between the topological and smooth categories.

Theorem 6.1 (Donaldson). If X is a closed, connected, oriented, smooth manifold with definite intersection form
QX , then QX is diagonalizable over Z.

Proof. Without loss of generality, we may assume b+2 (X) = 0 since we may swap orientation to make QX
negative-definite. Our method of proof will be to add simplifying assumptions along the way until we
derive a contradiction and subsequently backtrack to remove (or justify!) the assumptions one by one.

Assumption 1: b1(X) = 0.

Fix a Riemannian metric g and a Spinc-structure s; the latter exists by theorem 3.33. We consider now the SW
equations for (g, s, ω) ∈ P . Since b+2 (X) = 0, there always exists a reducible solution (A, 0) ∈ Zω . Finding
this solution amounts to solving the curvature equation F+

Â
= ω. From Chern-Weil theory, we know that

[ i2πFÂ] = c1(Ls). Every closed 2-form representing this cohomology class is the curvature of a suitable A,
since if A0 is some fixed Spinc-connection, the (self-dual) curvature of Â0 + a is F+

Â
= F+

Â0
+ 2d+a so we

must solve
2d+a = ω − FA0

Since b+2 (X) = 0, d+ : iΩ1 → iΩ2
+ is surjective (cf. section 3.4). Thus, we obtain a reducible solution and

Mω 6= ∅. In fact, it is unique up to gauge equivalence since if a, a′ are solutions to the curvature equation,
a − a′ ∈ iΩ1(X) is d+-closed, hence d-closed, therefore exact because b1(X) = 0 by assumption. However,
exact forms can be gauged away. Recall that

dimexpMω =
1

4

(
c21(Ls)− 2(χ(X) + 3σ(X))

)
It is a fact that c1(Ls) is a lift of w2(X) if and only if c21(Ls) = σ(X) + 8k for some k ∈ Z. (this is known as
the Van der Blij lemma). Using σ(X) = −b−2 (X) = −b2(X), we find:

dimMω =
1

4
(σ(X) + 8k − 2(2− 2b1(X) + b+2 (X) + b−2 (X))− 3σ(X)) =

1

4
(8k − 4) = 2k − 1

which is odd. Now, we add the next assumption:

Assumption 2: k > 0, equivalently, dimMω > 0.

By transversality (see theorem 5.38), we may assume that M∗ω is smooth and of the expected dimension,
since the reducible point (which sits inside a space of positive dimension) must be a deformation of ir-
reducible solutions. Moreover Mω is compact with one singular point, corresponding to the reducible
solution (A, 0). Donaldson’s original approach suggests that it is important to understand a neighborhood
of the singular point. At (A, 0), the linearized equations (cf. 5.6) decouple (crucially using Φ ≡ 0) into

iΩ0 ∼= R iΩ1(X) = 0 iΩ2
+ = 0

0 Γ(V+) Γ(V−)

−d d+

D+
A

Recall from the generalized Atiyah-Singer index theorem that

indCD
+
A =

1

8
(c21(Ls)− σ(X)) = k > 0
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We make our final assumption.

Assumption 3: D+
A is surjective.

In this case, indCD
+
A = dimC kerD+

A , i.e. kerD+
A
∼= Ck. At the reducible point, the stabilizer subgroup

of G is G(A,0) = U(1), given by the constant gauge transformations that rotate Φ (which now vanishes).
Following the discussion after lemma 5.9, a neighborhood of [A,Φ] ∈ Mω is given by ψ−1(0)/S1, where
ψ : H1

(A,0) = kerD+
A → H2

(A,0) is a choice of Kuranishi map. Our description of the stabilizer subgroup
shows that the differential of ψ may fail to be surjective at 0 ∈ H1

(A,0), but on H1
(A,0) \ {0}, ψ is transverse to

0 ∈ H2
(A,0). When assumption 3 is satisfied, a neighborhood of [A, 0] inMω is therefore a cone on CPk−1:

The cone point corresponds to the reducible solution.

We can cut out a neighborhood of the cone point, i.e. “truncate” Mω by removing an open cone around
the singular point, we get a compact manifold with boundary CPk−1. If k is odd, and this manifold is
orientable, we obtain a contradiction since the truncated moduli space would demonstrate that CPk−1 is
null-cobordant, which is false since σ(CPk−1) 6= 0 and the signature is a cobordism invariant.

Now, we begin the process of reconsidering our assumptions. IfM∗ω is orientable, we also get a contradic-
tion for k even, as we show now. Instead of looking at solutions modulo G, we can look at solutions modulo
G⊥ = {u ∈ G | u = eif

∫
X
fvolg = 0}. Recall that G ∼= G⊥ × Gh and that b1(X) = 0, hence G = G0, i.e.

every u : X → S1 is of the form u = eif for f : X → R. u ∈ Gh means that udu−1 = −idf is harmonic. But
then 〈dd∗df, df〉 = 0, which implies that d∗df = 0. Repeating this argument shows that df = 0, i.e. f is
constant. This shows that Gh ∼= U(1) in our situation.

It is now clear that away from the singular point [A, 0], we have a circle bundle β : M∗ω → M∗ω . This
space is a closed, oriented manifold and therefore has even Euler characteristic. On the other hand, as
a space admitting a U(1)-action with a single fixed point, it has Euler characteristic ±1, a contradiction.
Regarding orientability ofM∗ω , it is a fact (which we will not prove) thatM∗ω is actually orientable, so this
“assumption” need not be relaxed.

Consider assumption 3: If it is not satisfied, we have a Kuranishi map

ψ : Ck+r = H1
(A,0) → H2

(A,0) = Cr

It is still S1-equivariant, with ψ(0) = 0 and ψ t 0 ∈ Cr on Ck+r \ {0}. A neighborhood of [A, 0] in
Mω is given by ψ−1(0)/S1. Moreover, ψ descends to a section of the vector bundle given by H2

(A,0) over
H1

(A,0)/S
1 = C(CPk+r−1) (C(X) denotes the cone over X). If r = 1, this would be the hyperplane bundle

H but the constant gauge transformations making up S1 act like p copies of the action on C, i.e. we have a
rank r bundle

H ⊕ · · · ⊕H → C(CPk+r−1)

In the homology of CPk+r−1, ψ−1(0) is Poincaré dual to xr, where x is a generator of H2(CPk+r−1), i.e. for
generic value of the cone parameter, ψ−1(0) is a smooth submanifold N with homology class of a linear
CPk−1 ⊂ CPk+r−1. This implies

〈e(β)k−1, [N ]〉 = 〈e(β)k−1, [CPk−1]〉 6= 0

and we obtain a contradiction with Stokes’ theorem as before.

The first assumption can be maintained without loss of generality because of the following lemma:

Lemma 6.2. If QX is the intersection form of a smooth manifold X , then it is (isomorphic over Z to) the intersection
form of a smooth manifold Y with b1(Y ) = k for any k ∈ N0.

Proof. Raising the first Betti number without changing the intersection form is easy: b1(X#k(S1 × S3)) =
b1(X) + k and S1 × S3 has no second cohomology, hence QX#k(S1×S1)

∼= QX .
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Lowering the first Betti number is done by means of surgery: Suppose b1(X) > 0 andH1(X) ∼= Zb1(X)⊕Tor.
Pick a basis element α ∈ H1(X) for the free part: It can be realized by a smoothly embedded S1 ↪→ X . Pick
a tubular neighborhood T ∼= S1 ×D3 of the S1 in X . Then

∂T = ∂(S1 ×D3) = S1 × S2 = ∂(D2 × S2)

so we perform surgery: Remove T from X and glue in B2 × S2 in its place. In the manifold Y obtained
in this way, the circle we started with is null-homotopic, and therefore null-homologous. This shows that
b1(Y ) = b1(X)− 1. A Mayer-Vietoris argument shows that H2(X) ∼= H2(Y ) and Q(Y ) ∼=Z Q(X).

Finally, we discuss the assumption k > 0:

Proposition 6.3 (Elkies). Let Q be a negative definite unimodular symmetric bilinear form over Z. There exists a v
with v · x ≡ x2 mod 2 for all x and v2 > − rankQ if and only if Q is not diagonalizable.

Recall from proposition 3.30 thatw2(X)·α = r(α·α) (r denotes reduction modulo 2) for every α ∈ H2(X;Z).
Thus, if (and only if) QX is not diagonal over Z, there exists some c ∈ H2(X;Z) with r(c) = w2(X) ∈
H2(X;Z2) and c2 + b2(X) = 8k > 0. c determines a Spinc structure s with characteristic line bundle defined
through by c1(Ls) = c.

Fix (g, ω) ∈ P , and consider the SW equations for (s, gω). As beforeMω 6= ∅ because there exists a reducible
solution. The dimension is then the expected one and using b1(X) = 0 and c2 = σ(X) + 8k = −b2(X) + 8k
we find:

dimMω =
1

4
(c21(Ls)− (2χ(X) + 3σ(X)) =

1

4
(c2 − (4 + 2b2(X)− 3b2(X)))

=
1

4
(c2 + b2(X)− 4) = 2k − 1 > 0

So outside the single singular point,Mω is a smooth manifold of positive dimension. Our earlier equation

0 6= 〈w2(β)k−1, [N ]〉

still holds, but β is zero-bordant as a bundle over the truncated moduli space. This final contradiction tells
us that QX must be diagonal.

6.1.2 Sketch of the Original Argument

The original proof, due to Donaldson, precedes Seiberg-Witten theory and is much more natural. It uses
instantons. Let X be CCOS with b1(X) = 0 and b+2 (X) = 0 without loss of generality. Denote the space of
“1-instantons” on X byM1. Let P be an SU(2)-principal bundle over X with c2(P ) = 1 and consider the
anti self-duality equation ∗FA = −FA; its moduli space of solutions isM1. It turns out dimM1 = 5 and
that it fails to be compact. Understanding the non-compactness is key.

It turns out that the moduli space only has one “end”, which looks like X itself since the non-compactness
arises from concentrating arbitrarily much curvature at a single point: Such configurations are parametrized
by X . Cut off the end an replace it with X × [0, ε).

The bundle P splits as P = L ⊕ L−1 (i.e. c1(P ) = 0) and c2(P ) = 1 implies that c21(L) = −1. Each such
line bundle over X gives rise to a cone over CP2 with a singular cone point, i.e. the number of singular
points inM1 is equal to the number of classes (up to sign) ±c ∈ H2(X;Z) such that c21 = −1. Cutting away
neighborhoods of the singular points, the truncated moduli space becomes an oriented cobordism between
X and a disjoint union of pcopies of CP2’s and q copies of CP2’s.

Since the complement of the classes that give rise to the cones is of non-negative dimension, the number of
singular points is less or equal to rankH2(X;Z), i.e. p+ q ≤ b2(X). At the same time, cobordism invariance
of the signature implies p − q = σ(X). Now take QX to be negative-definite. Then q − p = b2(X) ≥ p + q
and therefore 2p ≤ 0, hence p = 0. Now, one needs to check that the classes ±c are mutually orthogonal to
conclude that QX is diagonal.
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6.2 Seiberg-Witten Invariants

For the rest of this section, we will assume that X is closed, connected, oriented and smooth, with b+2 (X) ≥ 2
(to avoid wall-crossing). Given a Spinc structure s and generic parameters (g, ω) ∈ P , Mω is a smooth,
closed, oriented manifold of expected dimension (if the expected dimension is negative,Mω = ∅). Then,
the fundamental class of the moduli space is an invariant of s.

Theorem 6.4. The map
SWX : Spinc(X) H∗(B∗;Z)

s [Mω]

is an oriented diffeomorphism invariant of X . That is, if f : Y → X is an orientation-preserving diffeomorphism,
then f∗ ◦ SWX = SWY ◦ f∗, i.e. the following diagram commutes:

Spinc(X) H∗(B∗X ;Z)

Spinc(Y ) H∗(B∗Y ;Z)

SWX

f∗ ∼= f∗∼=

SWY

Remark 6.5. The commutative square makes sense since B∗X is a classifying space for GX : A homotopy
equivalence Y → X induces an identification of these classifying spaces, i.e. an induced isomorphism f∗.

Proof of Theorem. We just need to check that SWX odes not depend on the choice of parameters. Since
b+2 (X) ≥ 2, we can connect two pairs (g, ω), (g′, ω′) by a path disjoint from the wall and obtain a cobordism
between the moduli spaces. This shows that their homology (as a submanifold of B∗) is the same.

Remark 6.6.

(i) [Mω] depends in an uncontrollable way on the orientation of X (!).

(ii) If the moduli space has dimension 0, we obtain a numerical invariant.

(iii) One may work withMω without considering its orientation and the associated unoriented invariant
SWX : Spinc(X)→ H∗(B∗;Z2).

6.2.1 Properties of Seiberg-Witten Invariants

We highlight some fundamental properties of SW invariants:

(i) Let τ : Spinc(X) → Spinc(X) be the charge conjugation map. Then SWX(τ(s)) = ±SWX(s). This
is because conjugation leads to an identification (g, ω) ↔ (g,−ω). This yields a diffeomorphism (not
necessarily oriented) ofMω , i.e. τ∗[Mω] = ±[Mω].

(ii) SWX has finite support.

Proof. If SWX(s) 6= 0, this implies that

0 ≤ dimMω =
1

4

(
c21(Ls)− (2χ(X) + 3σ(X))

)
so c21(Ls) ≥ 2χ(X) + 3σ(X). Another implication of SWX(s) 6= 0 is that there exist solutions for (g, 0);
let (A,Φ) be such a solution. Then

c21(Ls) =
1

4π2

(
‖F+

Â
‖2L2 − ‖F−

Â
‖2L2

)
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where ‖F+
A ‖2L2 ≤ ‖−sg‖L2/2

√
2. This implies a bound on F−

Â
, hence, if we writeH2(X;R) = H2(X) =

H2
+ ⊕H2

−, the projection of c1(L)R = [iFA/2π] to both H2
± are contained in a bounded set (the bound

depending only on (g, ω)). This implies that there are only finitely many possibilities for c1(Ls)R ∈
H2(X;R). Since we have an embeddingH2(X;Z)/Tor ↪→ H2(X;R) and Tor is finite, this implies that
there are only finitely many s ∈ Spinc(X) for which SWX(s) 6= 0.

(iii) If X admits a metric g0 with sg0 > 0, then SWX(s) ≡ 0.

Proof. Suppose SWX(s) 6= 0 for some s. Then there must be solutions of the SW equations for (s, g0, ω)
for some ω. Every solution must satisfy |Φ|2 ≤ max{0,−sg0

+ 2
√

2|ω|}: for ω = 0, and g = g0, there
can thus only be reducible solutions. For generic (g, ω), there are no reducible solutions and since
−sg0

+ 2
√

2|ω| is negative at (g0, 0), it is on an open neighborhood U ⊂ P of (g0, 0). Hence, for generic
(g, ω) ∈ U , the moduli space is empty: This is a contradiction.

Remark 6.7.

(i) This fails if b+2 (X) ≤ 1, as exemplified by CP2.

(ii) The above argument still works if X admits a metric g with sg ≥ 0 and sg 6≡ 0. This can also be
shown by deforming the given metric to one with sg > 0.

(iv) In case X admits a scalar-flat metric, we have the following:

Proposition 6.8. SupposeX admits a metric g with sg ≡ 0. If 2χ(X)+3σ(X) ≥ 0, then SWX(s) = 0 unless
c1(Ls)R = 0 and 2χ(X) + 3σ(X) = 0. In this latter case, SWX(s) ∈ H0(B∗;Z).

Proof. SupposeX is as in the proposition and SWX(s) 6= 0 for some s. Then for this s, since dimMω ≥
0 we have

c21(Ls) ≥ 2χ(X) + 3σ(X) ≥ 0

On the other hand, since SWX(s), there must be solutions for (g, 0), where g is the scalar-flat metric.
Then we have |Φ|2 ≤ −sg = 0 =⇒ Φ ≡ 0 =⇒ F+

A = σ(Φ,Φ) ≡ 0. But then

c21(Ls) = − 1

4π2

∫
X

‖F−A ‖
2volg ≤ 0

Thus, c21(Ls) = 2χ(X) + 3σ(X) = 0. Finally, for the solutions (A, 0), we must have F−A ≡ 0, so A is
flat on Ls =⇒ c1(Ls)R = 0, hence c1(Ls) ∈ Tor and in the absence of torsion c1(Ls) = 0 ∈ H2(X;Z).
Since the expected dimension is proportional to c21(Ls)− (2χ(X) + 3σ(X)) = 0, we see that SWX(s) ∈
H0(B∗;Z).

Corollary 6.9. If X is scalar flat and 2χ(X) + 3σ(X) > 0, then SWX ≡ 0.

6.3 Computations of Seiberg-Witten Invariants and Some Applications

6.3.1 K3 Surfaces and the 4-Torus

Let X be a smooth 4-manifold underlying a complex K3 surface, e.g. a smooth degree 4 hypersurface in
CP3 or the transverse intersection of three quadrics in CP5. X is oriented by the complex structure and for
this orientation σ(X) = −16, χ(X) = 24. X is a Calabi-Yau manifold. Such a manifold admits Ricci-flat (and
therefore scalar-flat) metrics, called Calabi-Yau metrics. Note that 2χ(X) + 3σ(X) = 0, so we may still have
a non-trivial SW invariant. However, X̄ has σ(X) = 16, χ(X) = 24, so 2χ(X̄) + 3σ(X̄) = 96 > 0. By the
above corollary, SWX̄ ≡ 0.

The proof of proposition 6.8 shows that, since π1(K3) = 1 and hence there is no torsion, SWX(s) = 0 unless
c1(Ls) = 0, i.e. unless s is the Spinc structure induced by the unique Spin structure (uniqueness follows
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from remark 2.32). Equip X equipped with this unique Spinc structure s and consider the SW equations
for (g, 0) ∈ P , where g is scalar-flat. For every solution, Φ ≡ 0, and A is flat: In fact A is unique up to
gauge equivalence (cf. exercise 9.1, which shows that the space of flat connections is T b1(X)). We cannot yet
conclude that SWX(s) = ±1 since we need to perturb to a transversal situation (i.e. generic parameters).

At the reducible solution, the linearized SW equations uncouple into the half-de Rham complex

Ω0(X) Ω1(X) Ω2
+(X)

d d+

which has cohomology groups H0
hdR
∼= R, H1

hdR = 0, H2
hdR
∼= Rb

+
2 (X) = R3, and the Dirac operator. Since A

is flat, the Weitzenböck formula shows that

D−AD
+
A = ∇∗A∇A +

1

4
sg

For the Calabi-Yau metrics, sg ≡ 0. Since we are interested in the kernel and cokernel, suppose that D+
AΦ =

0. Then
0 =

∫
X

〈
D−AD

+
AΦ,Φ

〉
volg =

∫
X

〈∇∗A∇AΦ,Φ〉volg =

∫
X

|∇AΦ|2volg

Thus, kerD+
A is the space of parallel, positive spinors. Similarly, cokerD+

A = kerD−A is the space of parallel,
negative spinors. It is a general fact which we will not prove that a parallel spinor which is nonzero at some
remains nonzero everywhere. However, e(V−) 6= 0, hence V− has no nowhere-vanishing section, i.e. the
space of parallel, negative spinors consists only of the zero section and D+

A is surjective. The Atiyah-Singer
index theorem shows that indCD

+
A = − 1

8σ(X) = 2. Now kerD+
A = C2 is made up of parallel sections for

∇A. These two parallel sections give a global trivialization of V+, i.e. the complex

0 Γ(V+) Γ(V−)
D+
A

has cohomology H1
D
∼= C2 and H0

D = H2
D = 0. We conclude that the elliptic complex has cohomology

H0
(A,0)

∼= R H1
(A,0)

∼= C2 H2
(A,0)

∼= R3

S1 acts on C2 by the standard action and trivially on R3 = C⊕R. Defining the S1-invariant Kuranishi map

ψ : C2 = H1
(A,0) H2

(A,0) = C⊕ R

(z, w) = Φ σ(Φ,Φ) = (zw̄, |z|2 − |w|2)

we see that a neighbourhood of [A, 0] ∈M0 is of the form ψ−1(0)/S1. Let us perturb the curvature equation
by ω ∈ H2

+ and consider ψ−1(ω)/S1. ψ is the cone on the Hopf map, i.e. restricting to elements satisfying
|ω|2 = 1 we find that ψ−1(ω) is a Hopf circle in S3 ⊂ C2, and ψ−1(ω)/S1 is a point. For a generic ω, this
unique solution up to gauge for the SW equation with parameters (g,−ω) is transverse, so SWX(s) = ±1.
In summary, we have proven the following:

Proposition 6.10. If X is the smooth manifold underlying a K3 surface with orientation induced by the complex
structure, then

SWX(s) =

{
±1, if s is induced by the unique Spin structure,
0, otherwise.

Corollary 6.11. There is no orientation-preserving diffeomorphism K3→ K3. But this is already clear form the fact
that σ(K3) 6= 0.

Now, we discuss the four-torus X = T 4 = R4/Z4 with a flat metric g. Since b+2 (T 4) = 3, SWT 4 is well-
defined. Since 2χ(X)+3σ(X) = 0, SWT 4(s) = 0 and there is no torsion, SWT 4(s) = 0 unless s is induced by
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a Spin structure (and in fact every Spin structure on T 4 induces the same Spinc structure, cf. remark 2.32).
For parameters (g, 0) with g scalar flat, we saw that all solutions are reducible with A flat. The gauge
equivalence classes of flat connections make up H1

dR(X)/H1(X;Z) ∼= T 4 (cf. exercise 9.1). In this case,
dimM0 = 4 while the expected dimension is 0. It turns out that using the Kuranishi method for T 4 is
rather cumbersome, so we use a different technique, which in fact also applies to K3 surfaces.

For any CCOS, Riemannian 4-manifold (X, g) which is scalar-flat with 2χ(X) + 3σ(X) = 0, consider s
induced by a Spin structure, i.e. c1(Ls) = 0. Pick a parallel self-dual 2-form ω (on a Calabi-Yau manifold
such as K3 or T 4, one may use the fundamental form) on (X, g) and consider the SW equations for s with
parameters (g, ω)

0 = 〈c1(Ls) ^ [ω], [X]〉 =

∫
X

i

2π
FA ∧ ω =

∫
X

i

2π
F+
A ∧ ω

where we used self-duality of ω. Let (A,Φ) ∈ Zω . Then the above equation, combined with the Weitzenböck
formula, yields:

0 =

∫
X

〈D−AD
+
AΦ,Φ〉volg =

∫
X

(
|∇AΦ|2 +

1

2
〈γ(F+

Â
)Φ,Φ〉

)
volg

=

∫
X

(
|∇AΦ|2 + 2〈F+

Â
, σ(Φ,Φ)〉

)
volg =

∫
X

(
|∇AΦ|2 + 2〈F+

Â
, F+

Â
− ω〉

)
volg

=

∫
X

(
|∇AΦ|2 + 2|F+

Â
|2
)

volg

Hence, Φ is parallel and F+

Â
≡ 0. Since c21(Ls)R = 0, we conclude that F−

Â
= 0 as well, so A is flat. Notice

that Φ 6≡ 0 since σ(Φ,Φ) = −ω by the curvature equation. Another linearly independent parallel spinor is
given by J(Φ), where J is the charge conjugation map. Since V+ admits a trivialization of V+ by parallel
sections, A is a product connection: Such connections are unique up to gauge. The map

C2 = kerD+
A H2

+

Φ σ(Φ,Φ)

has σ−1(−ω) ∼= S1 with the constant gauge transformations acting freely on this circle, since σ(λΦ, λΦ) =
σ(Φ,Φ) if and only if λ ∈ S1. Hence, the solution (A,Φ) is unique up to gauge. Replacing ω by rω for some
generic r ∈ R, we can make frω transverse. We have therefore shown the following.

Proposition 6.12. The SW invariant for the torus T 4 is given by

SWT 4(s) =

{
±1, for Spinc structures induced by Spin structures,
0, otherwise.

Corollary 6.13. K3 and Tn, for n ≤ 4, do not admit metrics with positive scalar curvature.

Proof. For K3 or T 4 this follows from SWX 6≡ 0. For Tn with n < 4, the claim follows by taking products,
since a product of a positive scalar curvature metric with a flat metric has positive scalar curvature.

Remark 6.14. For K3, this already from the fact that K3 is Spin and has nonzero signature; see 4.16. In the
case of T 2, the corollary follows from the Gauss-Bonnet theorem:

0 = χ(T 2) =
1

2π

∫
T 2

Kvolg

6.3.2 Einstein Manifolds

Definition 6.15 (Einstein Metric). A Riemannian metric is called Einstein if Ricg = λg for some λ ∈ R or,
equivalently, if the trace-free part of the Ricci tensor, Ricg,0, vanishes.
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By taking the trace and using that the trace of g is constant, we see that an Einstein metric always has
constant scalar curvature. The following are some first examples of Einstein manifolds.

Example 6.16.

• Spaces of constant curvature: S4/Γ, R4/Γ ∼= T 4/Γ′, H4/Γ, and so on, where Γ, Γ′ are discrete groups
acting freely (and properly discontinuously) by isometries.

• Other locally symmetric spaces: (CP2, ωFS), CP1 × CP1, CH2/Γ, (H2 ×H2)/Γ.

• Calabi-Yau metrics on K3 and finite quotients K3/Γ.

• Certain Kähler-Einstein metrics with sg > 0 on CP2#kCP
2
, for 3 ≤ k ≤ 8.

• Kähler-Einstein metrics with sg < 0 on compact complex surfaces with ample canonical bundle. This
is a large class of manifolds, which we will soon discuss.

• CP2#CP
2

with the so-called Page metric.

We use the following result without proof:

Theorem 6.17 (Chern-Gauss-Bonnet in Dimension 4). The Euler characteristic of a compact, oriented 4-manifold
X is given by

χ(X) =
1

8π2

∫
X

(
1

24
s2
g + ‖W+‖2 + ‖W−‖2 − ‖Ricg,0 ‖2

)
volg

where W = W+ +W− is the Weyl tensor.

As a corollary, we have:

Proposition 6.18 (Berger). If a 4-manifold X is Einstein, then χ(X) ≥ 0 with equality only if the Einstein metric
is flat.

We see that S1 × S3 and T 4#T 4 do not admit Einstein metrics.

Proposition 6.19 (Thorpe). If X4 is Einstein, χ(X) ≥ 3|σ(X)|/2.

Proof. For this, we need a curvature expression for the first Pontryagin number:

σ(X) =
1

3
〈p1(X), [X]〉 =

1

12π2

∫
X

(
|W+|2 − |W−|2

)
volg

The Chern-Gauss-Bonnet theorem then yields

2χ(X) =
1

4π2

∫
X

( 1

24
s2
g + |W+|2 + |W−|2

)
volg ≥

∣∣∣∣ 1

4π2

∫
X

(
|W+|2 − |W−|2

)
volg

∣∣∣∣
= 3|σ(X)|

Remark 6.20. Something more can be said: In the case of equality, the Einstein metric must have sg ≡ 0
and either W+ ≡ 0 or W− ≡ 0. Picking an orientation, we may assume W+ ≡ 0, i.e. 2χ(X) = −3σ(X). If
W− also vanishes, X is a flat and therefore, by a theorem of Bieberbach, a quotient of T 4. If not, it is locally
Calabi-Yau and locally isometric to K3, i.e. X is always a quotient of either T 4 or K3 by a finite group
acting freely by isometries. This observation is due to Hitchin.

Corollary 6.21. If X4 is Spin and admits an Einstein metric, then b2(X) ≥ 11
8 |σ(X)|.
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Proof. Assume σ(X) 6= 0; by Rohlin’s theorem, |σ(X)| ≥ 16. We compute:

8b2(X) = 8(χ(X)− 2 + 2b1(X))

≥ 8 · 3

2
|σ(X)| − 16 = 12|σ(X)| − 16 = 11|σ(X)|+ (|σ(X)| − 16)

≥ 11|σ(X)|

Finally, we can say something about the SW invariants of Einstein manifolds:

Proposition 6.22. Suppose X is a CCOS 4-manifold with b+2 (X) ≥ 2. If X admits a Ricci-flat metric and is not K3
or T 4, then SWX ≡ 0.

Proof. Hitchin’s characterization of Einstein manifolds with 2χ(X) = 3|σ(X)| shows that such manifolds
are (quotients of)K3 or T 4. One can explicitly check that the nontrivial quotients ofK3 and T 4 do not satisfy
the above assumptions. Therefore, we only have to consider 2χ(X) > 3|σ(X)|. Thus 2χ(X) + 3σ(X) ≥
2χ(X)− 3|σ(X)| > 0. This, together with the fact that X is scalar-flat, yields SWX ≡ 0 by corollary 6.9.

We can compare the results of Thorpe and Hitchin with the following:

Theorem 6.23 (Le Brun). Assume X is closed and oriented with b+2 (X) ≥ 2 and SWX 6= 0. If (X, g) is Einstein,
then χ(X) ≥ 3σ(X), with equality only if g is flat, or X = CH2/Γ (a quotient of the complex hyperbolic ball) and g
is a rescaling of the standard (Bergman) metric.

Proof. Let g be the Einstein metric and s a Spinc structure such that SWX(s) 6= 0. Then there must be
solutions (A,Φ) to the SW equations for parameters (g, 0). Since dimexpMω ≥ 0, c21(Ls) ≥ 2χ(X) + 3σ(X).
At the same time, Chern-Weil theory tells us that

c21(Ls) =
1

4π2

∫
X

(|F+

Â
|2 − |F−

Â
|2)volg

≤ 1

4π2
|F+

Â
|2volg =

1

32π2

∫
X

|Φ|4volg

≤ 1

32π2

∫
X

s2
gvolg ≤ 3

(
1

4π2

∫
X

( 1

24
s2
g + 2|W−|2

)
volg

)
= 3(2χ(X)− 3σ(X))

In conclusion, we find:

6χ(X)− 9σ(X) ≥ 2χ(X) + 3σ(X)⇐⇒ χ(X) ≥ σ(X)

If we have equality, we see that dimM0 = 0, F−
Â
≡ 0, |Φ|2 = −sg and W− ≡ 0. Using corollary 4.24, we also

see that ∇AΦ ≡ 0. Therefore, the curvature equation F+

Â
= σ(Φ,Φ) implies that F+

Â
is also parallel.

Since for sg > 0 one always has SWX ≡ 0, we may assume sg ≤ 0. In case sg ≡ 0, we see that Φ ≡ 0, hence
F+

Â
≡ 0. In this case, the Chern-Gauss-Bonnet theorem shows

χ(X) =
1

8π2

∫
X

|W+|2volg σ(X) =
1

12π2

∫
X

|W+|2volg

But thenχ(X) = 3
2σ(X), but at the same time χ(X) = 3σ(X), hence χ(X) = σ(X) = 0. Then W+ ≡ 0, hence

all components of the Riemann tensor vanish and (X, g) is flat.

Now assume sg < 0. Then Φ 6≡ 0 and F+

Â
is a parallel, self-dual 2-form, which is up to scaling a Kähler form

for g. But then g is a Kähler metric (to be discussed in the next section), i.e. (X, g) is Kähler-Einstein with
sg < 0 andW− ≡ 0. In this situation, it is a general fact thatW+ is parallel. Therefore, the Riemann tensor is
parallel and therefore this manifold is a locally symmetric space, which means that its universal Riemannian
cover is a symmetric space. The universal Riemannian cover is a non-compact, Hermitian symmetric space
and by the classification of symmetric spaces, it must be either CH2 or H2 ×H2. Since χ(X) = 3σ(X) > 0
by Chern-Gauss-Bonnet, we can rule out H2 ×H2.
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Remark 6.24.

(i) In the last step of this proof, we make use of Hirzebruch’s proportionality principle, which asserts that
(certain) characteristic numbers of locally symmetric spaces like the above are proportional to those of
a certain “compact dual” space which is naturally associated to them. This correspondence associates
CP2 to CH2 and its quotients, which therefore always satisfy χ = 3σ. Similarly, CP1×CP1 corresponds
to H2 ×H2 and its quotients, which therefore have χ > 0, σ = 0.

(ii) Comparing this with the results by Hitchin-Thorpe, we see that if the manifold is oriented such that
σ(X) ≥ 0, the non-vanishing of SW invariants imposes a stronger topological constraint than the
Einstein assumption alone. However, since the SW invariants depend strongly on the orientation
(requiring their non-triviality typically fixes the orientation), the result by Le Brun sometimes yields
no extra information over Hitchin-Thorpe.

6.3.3 Complex Surfaces with Kähler-Einstein Metrics

In this section, we will describe the SW invariants of one of the most important classes of Einstein man-
ifolds: Compact complex surfaces equipped with Kähler-Einstein metrics with negative scalar curvature
and ample canonical bundle. We first introduce some background material: Suppose that J is an almost
complex structure on a 4-manifold X , i.e. J ∈ Γ(End(TX)) with J2 = −Id, which gives TX the structure
of a complex vector bundle. Recall that, in this context, the first Pontryagin class of X is given by

p1(X) = c21(X)− 2c2(X) =⇒ c21(X) = p1(X) + 2c2(X)

Then by the signature formula 3.44 and the fact that c2(X) = e(X) since (TX, J) is of complex rank two,
we see that 〈c21(X), [X]〉 = 3σ(X) + 2χ(X). Since every integral lift of w2(X) (such as c1(x)) induces a
Spinc-structure, every J must give rise to a Spinc structure. In conclusion, almost complex manifolds come
with a canonical Spinc structure, scan.

We extend J C-linearly to TX ⊗R C = T 1,0 ⊕ T 0,1, where T 1,0 (T 0,1) is the eigenspace of J with eigen-
value +i (−i). As a complex vector bundle, T 1,0 ∼= (TX, J) while T 0,1 ∼= (TX,−J). We get an analogous
decomposition of T ∗X ⊗R C and its exterior powers:

Λk(T ∗X ⊗R C) =
⊕
p+q=r

(
Λp(T 1,0)∗ ⊗ Λq(T 0,1)∗

)
=
⊕
p+q=k
p,q≥0

Λp,q

where Λ1,0 = (T 1,0)∗.

Definition 6.25 (Hermitian Metric). A metric on TX (and the related bundles) with respect to which J is
orthogonal, i.e. g(Jv, Jw) = g(v, w), is called a Hermitian metric for J .

Given (X, g, J) where g and J are compatible (i.e. g is Hermitian), the two-form ω defined by ω(X,Y ) =
g(JX, Y ) is called the fundamental form. ω is is non-degenerate and prescribes an orientation for X , since its
top power is non-vanishing and therefore defines a volume form.

Definition 6.26 (Kähler Manifold). The triple (J, g, ω) makes X into a Kähler manifold if∇J = 0, or equiv-
alently∇ω = 0. If dω = 0, we call X almost Kähler.

Note that∇J = 0 implies that J is integrable, while∇ω = 0 implies that ω is closed. Thus, Kähler manifolds
are almost Kähler and come with both a complex and symplectic structure, which are mutually compatible.

Given a Hermitian metric g, we extend the Hodge star operator to the complexified differential forms
∗ : Λp,q → Λ2−q,2−p, given by the formula α ∧ ∗β̄ = g(α, β)volg , which makes ∗ into a C-linear map. This
allows us to consider the spaces of self-dual and anti self-dual forms:

Λ2
+ ⊗R C = C ω ⊕ Λ2,0 ⊕ Λ0,2

Λ2
− ⊗R C = Λ1,1

⊥ω
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where we used that ω ∈ Λ1,1 to define the orthogonal complement Λ1,1
⊥ω ⊂ Λ1,1. Now, we explicitly define

the canonical Spinc structure defined by the almost complex structure. Its spinor bundles are given by

V+ = Λ0,0 ⊕ Λ0,2 V− = Λ0,1

and we define Clifford multiplication by

γ(a) : V+ V−

(α, β)
√

2(a0,1 ∧ α− ∗(a1,0 ∧ ∗β))

and
γ(a) : V− V+

ψ
√

2
(
− ∗ (a1,0 ∧ ∗ψ), a0,1 ∧ ψ

)
One has to check that this definition satisfies the properties of a Clifford module; this is done in exercise
12.1. Let α ∈ Ωp,q(X) and define the Dolbeault operators ∂α := (dα)p+1,q and ∂̄α := (dα)p,q+1. Keep
in mind that in the almost complex case, we do not have d = ∂ + ∂̄ in general. We can still define the
adjoint operators with respect to the L2 metric. Denote them by ∂∗ and ∂̄∗. Then our definition for Clifford
multiplication makes γ into the symbol of the maps

V+ V−

(α, β)
√

2(∂̄α+ ∂̄∗β)

V− V+

ψ
√

2(−∂̄∗ψ,−∂̄ψ)

This canonical Spinc structure scan gives us a way to identify Spinc(X) withH2(X;Z) via the mapH2(X;Z) 3
L 7→ scan ⊗ E =: sE , where we abuse notation to identify a line bundle E with its first Chern class (we
will sometimes also “additive” notation in place of tensor products, e.g. K − E may denote the bundle
K⊗E−1). The spinor bundles of sE are given by V+ = E⊕ (Λ0,2⊗E) = E⊕ (K−1⊗E), where K := Λn,0 is
the canonical line bundle, and V− = Λ0,1 ⊗ E. However, this choice of “reference point”’ is not an oriented
diffeomorphism invariant, thus the identification is not natural under pullback.

Lemma 6.27. If (J, g, ω) is Kähler-Einstein, then

〈c21(X, J), [X]〉 =
1

32π2

∫
X

s2
gvolg

Proof. Let ρ be the curvature 2-form of the connection on the characteristic line bundle detV± = K−1

induced by the Levi-Cività connection. We will need the following fact: If g is Kähler Einstein, then ρ = iλω
for constant λ. In the present case, λ = sg/4 (this can be computed from Chern-Gauss-Bonnet). Since
c1(X, J) = −c1(K), we have

〈c21(X, J), [X]〉 = 〈c21(K), [X]〉 =

∫
X

i

2π
ρ ∧ i

2π
ρ

=

∫
X

(
−sg
8π

ω

)
∧
(
−sg
8π

ω

)
=

1

64π2

∫
X

s2
gω ∧ ω

Finally, note that ω2 = 2volg to obtain the promised result.
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Assume X has a Kähler-Einstein structure (J, g, ω) and E is a complex line bundle such that SWX(sE) 6= 0.
Then the SW equations for sE and (g, 0) ∈ P must have solutions (A,Φ). We have

〈c21(X, J), [X]〉 = 2χ(X) + 3σ(X) ≤ 〈c21(LsE ), [X]〉 =
1

4π2

∫
X

(
|F+
A |

2 − |F−A |
2
)

volg

≤ 1

4π2

∫
X

|F+
A |

2volg =
1

32π2

∫
X

|Φ|4volg ≤
1

32π2

∫
X

s2
gvolg = 〈c21(X, J), [X]〉

Hence, all the inequalities are equations and as a consequence dimM0 = 0, F−
Â
≡ 0 and |Φ|4 = s2

g = const.
We have the following cases.

• If sg > 0, and b+2 (X) ≥ 2, then SWX ≡ 0. In fact, this case does not occur since it turns out that
b+2 (X) = 1 for a Kähler-Einstein surface X .

• If sg ≡ 0, then g is flat or Calabi-Yau, i.e. either T 4 or K3.

• For sg < 0, we see that |Φ|2 = −sg > 0, so the solution is irreducible. Recall from corollary 4.24 that if
the Spinc structure s admits solutions for parameters (g, 0) ∈ P , then

〈c21(Ls), [X]〉 ≤ 1

32π2

∫
X

s2
gvolg

with equality if and only if F−A = 0,∇AΦ = 0, and |Φ|2 = −sg . Hence, Φ is non-zero and parallel; it is
a fact that such a section trivializes either E orK−1⊗E. In the first case, sE = scan. In the second case,
sE = scan ⊗K = scan, since K is the characteristic line bundle. These are the only Spinc-structures for
which SWX(sE) may be non-zero. In both cases, there are in fact tautological solutions, unique up to
gauge.

The above discussion can be summarized as follows:

Theorem 6.28 (Witten). If X is a complex surface with b+2 (X) ≥ 2, which admits a Kähler-Einstein metric with
sg < 0, then

SWX(s) =

{
±1 if s = scan or s̄can

0 otherwise.

Remark 6.29. In the situation of the theorem above, suppose that f : X → X is an orientation-preserving
diffeomorphism. Then we must have f∗(scan) = scan. For the action of f∗ on H2(X;Z), this implies that
f∗c1(X, J) = ±c1(X, J) 6= 0, or equivalently f∗K = ±K (denoting the first Chern class of the canonical
bundle by K).

Our computations so far can be summarized as follows:

Theorem 6.30. Let X be one of the following Kähler 4-manifolds

• X = T 4.

• X = K3.

• X Kähler-Einstein with sg < 0 and b+2 ≥ 2.

Then SWX(s) = ±1 if s = scan or s = s̄can, and SWX(s) = 0 otherwise.

6.3.4 The Adjunction Inequality for Surfaces

In an earlier chapter, we saw (cf. theorem 3.40):

Theorem 6.31. If X is a closed, complex 4-manifold and Σ an embedded complex curve equipped with the complex
orientation, then 2g(Σ)− 2 = Σ · Σ +KΣ.
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In the presence of non-vanishing SW invariants, we obtain a lower bound for any smoothly embedded
surface:

Theorem 6.32 (Adjunction Inequality for Surfaces). Let X be a CCOS 4-manifold with b+2 (X) ≥ 2, and Σ ⊂ X
a smoothly embedded, oriented (and connected) surface with g(Σ) 6= 0 and Σ · Σ ≥ 0. If SWX(s) 6= 0, then

2g(Σ)− 2 ≥ Σ · Σ + |c1(Ls) · Σ|

This inequality gives us a lower bound on the genus g(Σ) if [Σ] is fixed with positive self-intersection.

Corollary 6.33. Let X be a Kähler 4-manifold as in theorem 6.30. Suppose Σ ⊂ X is a complex curve with Σ ·Σ ≥ 0
and let Σ′ be a connected, smoothly embedded surface with [Σ′] = [Σ]. Then g(Σ′) ≥ g(Σ).

Proof. Since X is Kähler and Σ ⊂ X complex, Σ is also Kähler and hence 〈ω, [Σ]〉 6= 0, i.e. [Σ] 6= 0 and is of
infinite order. Now if Σ′ is a sphere such that g(Σ′) = g(Σ) and Σ′ ·Σ′ ≥ 0, then by exercises 11.1-3 we must
have SWX ≡ 0, but that is false by assumption. Hence g(Σ′) > 0. Now, we use the adjunction inequality
for scan, since we know that SWX(scan) 6= 0. This yields

2g(Σ′)− 2 ≥ Σ · Σ + |K · Σ| ≥ Σ · Σ +KΣ = 2g(Σ)− 2

and therefore g(Σ′) ≥ g(Σ).

Remark 6.34.

(i) The Thom conjecture asks whether complex curves with Σ ·Σ ≥ 0 in a complex surface have minimal
genus among all smooth surfaces in their homology class. The above is a special case. The Thom
conjecture was proven in 1994, very soon after the advent of SW theory, by Kronheimer and Mrowka.

(ii) The result actually holds for all symplectic 4-manifold, with the same adjunction formula, and the
notion of “complex” replaced with “J-holomorphic” (J is an ω-compatible almost complex structure).
It is proven using c1(Lscan) = −K. Other generalizations, such as the symplectic Thom conjecture (now
a theorem, due to Ozsváth and Szabó), are also of interest.

We start by considering the case Σ · Σ = 0:

Theorem 6.35. Let X be a closed, oriented, smooth 4-manifold with b+2 ≥ 2. Let s ∈ Spinc(X) with SWX(s) 6= 0.
If Σ ⊂ X is a smoothly embedded connected surface with g(Σ) 6= 0 and Σ · Σ = 0, then

2g(Σ)− 2 ≥ |c1(Ls) · Σ|

Definition 6.36 (Basic Class). If SWX(s) 6= 0, then c1(Ls) is called a basic class.

Remark 6.37. The adjunction inequality means that basic classes of smooth 4-manifolds generalize canoni-
cal classes of Kähler or symplectic manifolds.

Proof of Theorem. Let g be a Riemannian metric on X and s ∈ Spinc(X) such that SWX(s) 6= 0. There must
exist solutions for parameters (g, 0). Observe that

1

4π2

∫
X

|FÂ|
2volg =

1

2π2

∫
X

|F+

Â
|2volg − c21(Ls)

and by the monopole equations this becomes

1

4π2

∫
X

|FÂ|
2volg =

1

2π2

∫
X

|σ(Φ,Φ)|2volg − c21(Ls) =
1

16π2

∫
X

|Φ|4volg − c21(Ls) ≤
1

16π2

∫
X

s2
g − c21(Ls)
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Choose a metric gΣ on the embedded surface Σ which is of constant curvature, and such that volgΣ(Σ) = 1.
Since Σ · Σ = 0, the normal bundle ν(Σ) is trivial, hence diffeomorphic to Σ × D2. Choose a metric on X
such that in ν(Σ) there is a metric cylinder of the form Σ× S1 × [0, R] equipped with product metric, given
by gΣ times the standard metrics on S1 and [0, R] ⊂ R; additionally, on X \ ν(Σ) the metric should not
depend on R. Call it gR.

Σ

Σ

S1 × Σ× [0, R]

There exist solutions to the SW equations for parameters (gR, 0) for any R > 0. The curvature satisfies

1

4π2

∫
X

|FÂ|
2volgR ≥

∫
Σ×S1×[0,R]

∣∣∣ i
2π
FÂ

∣∣∣2volgR =

∫
S1×[0,R]

∫
Σ

∣∣∣ i
2π
FÂ

∣∣∣2volΣ ∧ volS1×[0,R]

≥
∫
S1×[0,R]

(∫
Σ

i

2π
FÂ

)2

volS1×[0,R] =

∫
S1×[0,R]

(c1(Ls) · Σ)2volS1×[0,R] = R(c1(Ls) · Σ)2

where we discarded part of our integral in the first step, then applied Fubini’s theorem and later used the
fact that we set volS1 = 1. To relate this to our earlier inequality in an interesting way, we consider the scalar
curvature term:∫

X

s2
gRvolgR =

∫
Σ×S1×[0,R]

s2
gRvolgR + C = R

∫
Σ

s2
gΣ

volgΣ
+ C = R

(∫
Σ

sgΣ
volgΣ

)2

+ C

= R(4π(2− 2g(Σ)))2 + C

Here, C is a constant (i.e. independent of R). Since sgΣ
is constant, we may the square out of the integral,

as we did. Then we recall that on a surface, sg is twice the Gauss curvature and that its integral therefore
equals 4πχ(Σ). This shows that for any R > 0

R(c1(Ls) · Σ)2 ≤ 1

4π2

∫
X

|FÂ|
2volgR ≤

1

16π2
s2
gRvolgR − c21(Ls) = R(2g(Σ)− 2)2 + C ′

where the constant C ′ contains anything that does not depend on R. Since R > 0, we have

(c1(Ls) · Σ)2 ≤ (2g(Σ)− 2)2 +
C ′

R

and in the limit R→∞, we can use the assumption g(Σ) > 0 to obtain

|c1(Ls) · Σ| ≤ 2g(Σ)− 2

which is the result we were after.

For the case Σ · Σ > 0, we only give a sketch of proof:

Sketch of Proof of the Adjunction Inequality. Suppose Σ · Σ = k > 0. Since c1(Ls̄) = −c1(Ls) and SWX(s̄) =

±SW (s), we may assume that c1(Ls) · Σ ≥ 0. Instead of Σ ⊂ X , consider Σ′ = Σ#CP1 ⊂ X ′ = X#CP2.
Since Σ′ arises from tubing together Σ and a sphere, its genus is the same, however Σ′ ·Σ′ = k−1 andQX′ =
QX ⊕ (−1). If we can find a Spinc structure s′ on X ′ such that SWX(s′) 6= 0 and c1(Ls′) ·Σ′ = c1(Ls) ·Σ + 1,
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then all of our assumptions still hold and we do not spoil the (prospective) adjunction inequality. Thus,
given such a Spinc structure we can inductively reduce the proof to the case k = 0.

Consider a linear CP1 ⊂ CP2 and its Poincaré dual x ∈ H2(X ′;Z). If we can find s′ such that c1(Ls′) =
c1(Ls) − x, then we can use the fact that x is dual to a surface inside CP2 (and therefore intersects Σ
trivially) and has self-intersection −1 to find c1(Ls′) · Σ′ = c1(Ls) · Σ + 1, hence such a Spinc structure
would suffice for our purposes. There exists such an s′ if and only if the modulo two reduction of c1(Ls′)

equals w2(X ′) = w2(X) + w2(CP2). We know that c1(Ls) reduces to w2(X) while −x reduces to w2(CP2),
hence such a Spinc structure exists. The blow-up formula SWX′(s

′) = ±SWX(s), which we will not prove,
ensures that the SW invariant of s′ is non-trivial. This finishes the proof.

6.4 Seiberg-Witten Invariants of Symplectic Manifolds

Let (X,ω) be a CCOS, symplectic 4-manifold, i.e. ω ∧ ω > 0, and dω = 0, equipped with an almost complex
structure J . As we saw in the previous section, this determines a canonical Spinc-structure scan.

Definition 6.38 (Canonical Class). The canonical class K = Kω is the first Chern class of the complex line
bundle Λ2,0 → X for any compatible almost complex structure. This is independent of the choice of almost
complex structure since the space of compatible almost complex structures is contractible.

Recall the bijection H2(X;Z)→ Spinc(X) which sends E 7→ scan ⊗ E =: sE .

Definition 6.39. We set
SWX,ω(E) = SWX(scan ⊗ E)

where the subscript ω indicates the dependence on ω, since scan depends on ω.

To see how this works, recall that scan has V+ = C ⊕ K−1 and Lscan = K−1, thus s̄can = scan ⊗ K. More
generally, s̄E = scan ⊗ (K ⊗ E−1). Using charge conjugation, the following is therefore easy to see:

Lemma 6.40. For every E ∈ H2(X;Z),

SWX,ω(E) = ±SWx,ω(K − E)

6.4.1 Taubes’ Results on Symplectic 4-Manifolds and their Consequences

In the years following the advent of SW theory, Taubes proved certain fundamental theorems regarding the
SW invariants of symplectic 4-manifolds. One of the most important results is the following:

Theorem 6.41 (Taubes, ’95). Let (X4, ω) be closed and symplectic with b+2 ≥ 2 and canonical class K. Then

(i) SWX,ω(0) = ±SWX,ω(K) equal ±1 ∈ H0(B∗;Z).

(ii) If E ∈ H2(X;Z) is any class with SWX,ω(E) 6= 0, then 0 ≤ E · [ω] ≤ K · [ω] with equality in the first relation
if and only if E = 0, and in the second if and only if E = K.

The proof will be postponed until the next section. Instead, we will study some of the consequences and
applications of this theorem. In what follows, X will always be CCOS with b+2 ≥ 2.

Corollary 6.42. If SWX ≡ 0, then X does not admit a symplectic form.

Example 6.43.

(i) If X has a Riemannian metric with sg > 0, then X does not admit a symplectic form. This does not
hold if b+2 (X) = 1, as exemplified by CP2: Equipped with the Fubini-Study metric, it is Kähler-Einstein
with positive scalar curvature.
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(ii) Let Xp,q = pCP2#q ¯CP2. If p = 1, these are blow-ups of CP2, and they are symplectic. If p, q ≥ 2,
exercise 11.4 shows that SWXp,q ≡ 0, hence these manifolds are not symplectic. We also have the
following result:

Proposition 6.44. Xp,q is almost complex if and only if p is odd.

Corollary 6.45. If p ≥ 3 is odd, then Xp,q is almost complex but not symplectic.

The proposition follows from a more general result:

Lemma 6.46. A CCOS, simply connected 4-manifold is almost complex if and only if b+2 (X) is odd.

Proof. It follows from homotopy theory that a class k ∈ H2(X;Z) is the canonical class of an almost
complex structure if and only if

k2 = 2χ(X) + 3σ(X) k ≡ w2(X) mod 2

Using the Van der Blij lemma, these conditions imply that 〈k2, [X]〉 ≡ σ(X) mod 8. Therefore, we
have the following equalities modulo 8:

0 ≡ k2 − σ(X) = 2(χ(X) + σ(X)) = 4 + 4b+2 (X)

We conclude that b+2 (X) is odd.

Conversely, suppose that b+2 (X) = 2`−1 is odd: IfQX is also odd, the Hasse-Minkowski classification
tells us that QX = (2`− 1)(1)⊕ q(−1). In the vector space H2(X;Z), set k = (3, . . . , 3, 1, . . . , 1), where
there are ` entries equal to 3 and ` + q − 1 equal to 1, the last q of which correspond to the negative-
definite directions (under the intersection form). Then the reduction of k modulo two equals (1, . . . , 1),
which is exactly w2(X) since 〈w2, α〉 = 〈α, α〉 mod 2. Furthermore,

〈k2, [X]〉 = 9`+ `− 1− q = 5(2`− 1) + 4− q = 2(2 + 2`− 1 + q) + 3(2`− 1− q) = 2χ(X) + 3σ(X)

where we used that χ(X) = 2 + 2b2(X) = 2 + 2`− 1 + q and σ(X) = 2`− 1− q. Hence k is a canonical
class.

If QX is even, then QX = (2` − 1)H ⊕ 2mE8 by Freedman and Donaldson’s theorems. Therefore
2χ(X) + 3σ(X) = 8(`+ 4|m| − 6m). Since b+2 (X) is odd, we must have at least one copy of H . Choose
a basis {x, y} for this copy such that x · x = y · y = 0 and x · y = 1 and set k = 2x+ 2(`+ 4|m| − 6m)y.
Then k reduces, modulo two, to 0 = w2(X) and 〈k2, [X]〉 = 8(`+ 4|m| − 6m) = 2χ(X) + 3σ(X).

The result can also be used to prove that certain topological manifolds admit multiple non-diffeomorphic
smooth structures. Consider a K3 surface, which is Calabi-Yau, hence symplectic. Then X = K3#CP2,
since the blow-up of a symplectic manifold is symplectic too. In particular, Taubes’ theorem ensures that
SWX 6≡ 0. Since b+2 (X) = 3 and b−2 (X) = 20, the intersection form must be 3(1) ⊕ 20(−1). Freedman’s
theorem then implies that this manifold is homeomorphic to X3,20 = 3CP2#20CP2.

However, we showed in exercise 11.4 that SWX3,20
≡ 0. Therefore, these manifolds are not oriented diffeo-

morphic. As a corollary, we see that the existence of a symplectic structure may depend on the choice of
smooth structure. That it is also sensitive to the choice of orientation follows from the fact that K3 does not
admit a symplectic form, since SWK3 ≡ 0.

There is another important vanishing theorem for SW invariants:

Theorem 6.47. If X has a connected sum decomposition X ∼= Y1#Y2, with b2(Yi) ≥ 1, then SWX ≡ 0.

An example of this situation is the manifold (2k+1)CP2, for k ≥ 1: it is almost complex, but not symplectic.

77



Corollary 6.48. If X = Y1#Y2 has b+2 ≥ 2 and is symplectic, then one of Y1, Y2 must have negative definite
intersection form.

We list a few more easy corollaries of Taubes’ theorem:

Corollary 6.49. For X4 CCOS with b+2 (X) ≥ 2, there exist at most finitely many classes K ∈ H2(X;Z) which are
the canonical class of a symplectic form on X .

Proof. This follows from the fact that the SW map has finite support.

Corollary 6.50. X (as above) does not admit a symplectic form whose induced almost complex structure yields a
canonical class which is non-zero and torsion.

Remark 6.51. The case K = 0 does occur, for instance for Calabi-Yau manifolds such as K3 and T 4.

Proof. Suppose K 6= 0 is torsion. By the first part of Taubes’ theorem, SWX,ω(K) 6= 0. By the second part,
0 ≤ K · [ω] with equality if and only if K = 0. Hence K · [ω] > 0, but the intersection with a torsion element
must always vanish since the intersection form is bilinear.

Remark 6.52. The necessity of the assumption b+2 (X) ≥ 2 is shown by the Enriques surface Q, which is the
quotient of K3 under a free holomorphic Z2 action. It has fundamental group Z2, so the cohomology has
2-torsion. It is Kähler (and hence symplectic) with K 6= 0 but 2K = 0: This is possible since b+2 (Q) = 1, as
we will now show.

By multiplicative of χ and σ under coverings, χ(Q) = χ(K3)/2, and σ(Q) = σ(K3)/2. Hence, χ(Q) = 12,
σ(Q) = 8; combining this with b1(Q) = 0 (since π1(Q) = Z2), we find b+2 (Q) = 1, and b−2 (Q) = 9. As an
aside, we note that this is also the simplest example of a manifold which has even intersection form but is
not Spin.

Corollary 6.53. Suppose ω1 and ω2 are symplectic forms for X with canonical classes K1 and K2.

(i) The class K2 −K1 cannot be torsion and non-zero.

(ii) K1 = 0⇒ K2 = 0, i.e. if X admits one symplectic form with K = 0, then K = 0 for any symplectic form.

Proof. There is a line bundle E such that scan,ω2
∼= scan,ω1

⊗ E. By Taubes’ theorem, 0 6= SWX,ω2
(0) =

SWX,ω1
(E). By lemma 2.47, K2 = K1 +2E. Now assume K2−K1 = 2E is torsion. Then E is torsion, hence

0 = E · [ω]. By Taubes’ theorem, this implies E = 0, hence K2 −K1 = 0.

For the second claim, suppose K1 = 0. Since SWX,ω1
(E) 6= 0, 0 ≤ E · [ω] ≤ K1 · [ω] = 0. Therefore E = 0,

hence K2 = K1 = 0.

Example 6.54. This applies to Calabi-Yau manifolds, showing that any symplectic structure on such a man-
ifold has K = 0. We already saw this explicitly for K3 and T 4.

Finally, we state another important and difficult theorem by Taubes, which we will not prove:

Theorem 6.55 (Taubes, ’96). Let (X,ω) be a closed symplectic 4-manifold with b+2 (X) ≥ 2. SupposeE ∈ H2(X;Z)
is a class with SWX,ω(E) 6= 0. Then for a generic J compatible with ω, the Poincaré dual class in H2(X;Z) can be
represented by a closed (possibly disconnected) J-holomorphic curve in X .

Corollary 6.56. For X as above, if K 6= 0, then its Poincaré dual can be represented by a J-holomorphic curve
(SWX,ω(K) 6= 0 by Taubes’ other theorem). Then, since J-holomorphic submanifolds intersect positively with the
fundamental class, K · [ω] ≥ 0 with equality if and only if K = 0.
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If 0 6= SWX,ω(E), charge conjugation SWX,ω(E) = ±SWX,ω(K − E) then shows that E · [ω] ≥ 0 and
K · [ω] ≥ E · [ω], with equalities if and only if E = 0 and K = E, respectively: We recover the second
statement of Taubes’ first theorem.

Remark 6.57. Again, if b+2 (X) = 1, the theorem does not hold and CP2 gives an easy counterexample:
Recall that K = −3x (x the Poincaré dual of the positive generator [CP1] ∈ H2(CP2;Z)), hence K · [ω] < 0.

6.4.2 Proof of Taubes’ Theorem on SW Invariants of Canonical Classes

In this section, we will outline the proof of theorem 6.41. We start by studying Clifford multiplication no
the spinor bundles V+ = Λ0,0 ⊕ Λ0,2 = C ⊕ K−1 and V− = Λ0,1. For the remainder of this section, let
Φ0 = (1, 0) ∈ V+ and recall the definition of the Clifford multiplication from section 6.3.3.

Lemma 6.58. Clifford multiplication by the symplectic form is given by

γ(ω)Φ0 = −2iΦ0

and for τ ∈ Λ0,2(X), we have
γ(τ)Φ0 = 2τ

Proof. Exercises 12.2-3.

Lemma 6.59. For Φ = (α, β) ∈ Γ(V+), σ(Φ,Φ) ∈ Λ2
+ ⊗R C = C ω ⊕ Λ2,0 ⊕ Λ0,2 is given (component-wise) by

σ(Φ,Φ)ω =
i

4

(
|α|2 − |β|2

)
σ(Φ,Φ)2,0 = σ(Φ,Φ)0,2 =

1

2
ᾱβ

Proof. We already showed in section 4.3 that

γ(σ(Φ,Φ)) = (Φ⊗ Φ†)0 =

 1
2 (|α|2 − |β|2) αβ̄

ᾱβ 1
2 (|β|2 − |α|2)


Restricting the domain, we have (Φ ⊗ Φ†)0 : V+ → V+; Φ0 7→ ( 1

2 (|α|2 − |β|2), ᾱβ). On the other hand, we
can use the previous lemma to see that if ω is the symplectic form, then

i

4
(|α|2 − |β|2)γ(ω)Φ0 =

(1

2
(|α|2 − |β|2), 0

)
which shows that σ(Φ,Φ)ω is indeed i

4 (|α|2 − |β|2). Similarly, one sees that σ(Φ,Φ)0,2 must equal 1
2 ᾱβ.

Lemma 6.60. There exists a U(1)-connection Â0 on K−1 such that the induced Spinc-connection A0 satisfies
∇A0Φ0 ∈ Ω1(X,K−1) ⊂ Ω1(X,V+).

Proof. Let Â be any U(1)-connection on K−1 and set Â0 = Â + a where a ∈ Ω1(X; iR). Then ∇A0Φ0 =
∇AΦ0 + 1

2aΦ0. Define (∇AΦ0)0,0 =: bΦ0, where b ∈ Ω1(X; iR), and take a = −2b to obtain the U(1)-
connection we want.

Furthermore, we need to understand what happens to the spinor bundles upon twisting with a line bundle
E. Consider scan ⊗ E, for some E ∈ H2(X;Z). Then V+ = E ⊕ (K−1 ⊗ E) and V− = Λ0,1 ⊗ E. Therefore, a
positive spinor Φ ∈ Γ(V+) is given by (α, β) ∈ Ω0,0(E)⊕ Ω0,2(E).

Given a Spinc-connection A0 on V+,can and a U(1)-connection B on E, we obtain a Spinc-connection A =

A0 ⊗ B. On the determinant line bundle L = K−1 ⊗ E2, this yields a U(1)-connection Â = Â0 ⊗ B2 with
curvature FÂ = FÂ0

+ 2FB . Our discussion can be summarized as follows:
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Proposition 6.61. For the Spinc-structure scan ⊗ E, the curvature equation for (A,Φ) ∈ P with perturbation η,

F+

Â
= σ(Φ,Φ) + η

is equivalent to the following equations for the triple (B,α, β):

FωB =
1

2

(
i

4

(
|α|2 − |β|2

)
ω + ηω

)
− 1

2
Fω
Â0

F 0,2
B =

1

2

(
1

2
ᾱβ + η0,2

)
− 1

2
F 0,2

Â0

On the other hand, we will not prove the following fact:

Proposition 6.62. The Dirac equation D+
AΦ = 0 is equivalent to the equation ∂̄Bα+ ∂̄∗Bβ = 0 for (B,α, β).

Definition 6.63 (Exterior Covariant Derivative). We define the so-called exterior covariant derivative dB :
Ωk(E)→ Ωk+1(E) on forms of type µ⊗ s ∈ Ωk(X)⊕ Γ(E) by dB(µ⊗ s) = (dµ)⊗ s+ µ ∧∇Bs and linearly
extend to define it on Ωk(E).

We have the following Weitzenböck-type formula.

Lemma 6.64. For any section s ∈ Γ(E), the following holds:

∂̄∗B ∂̄Bs =
1

2
(d∗BdBs− i ∗ (ω ∧ FBs))

Remark 6.65. Note that ∂̄2 6= 0 on almost complex manifolds. In fact, for a smooth function f we have
∂̄2f = −N(∂f), where N is the Nijenhuis tensor11. More generally,

∂̄2
Bα = F 0,2

B α−N(∂Bα)

for all α ∈ Γ(E).

We now have everything we need to prove Taubes’ first theorem. Since it is already known that SWX,ω(E) =
±SWX,ω(K − E), we just need to prove the following:

(i) SWX,ω(0) = ±1.

(ii) If E ∈ H2(X;Z) any class with SWX,ω(E) 6= 0, then 0 ≤ E · [ω] with equality if and only if E = 0.

Consider the SW equations for a specific perturbation η, given by ηω = Fω
Â0
− i

4rω and η0,2 = F 0,2

Â0
, where

r ∈ R. The monopole equations then reduce to

∂̄Bα = −∂̄∗Bβ

FωB =
i

8

(
|α|2 − |β|2 − r

)
ω

F 0,2
B =

1

4
ᾱβ

Let E = 0, and r ≥ 0. Then there is an obvious solution: B = 0, |α|2 = r, β = 0, ∂̄α = 0. We will show that
this solution is unique up to gauge, for sufficiently large r. First, we have to do some calculations.

Let E ∈ H2(X;Z) be an arbitrary class. Suppose there exists a solution (B,α, β) to the SW equations. Our
last lemma shows that ∫

X

|dBα|2volg =

∫
X

(〈
2∂̄∗B∂Bα, α

〉
+ 〈i ∗ (ω ∧ FBα) , α〉

)
volg

11The vanishing of the Nijenhuis tensor is equivalent to integrability of J .

80



We will now rewrite these two terms. For the first term, we employ the SW equations and the formula for
∂̄2
Bα in terms of the Nijenhuis tensor to find∫

X

〈2∂̄∗B∂Bα, α〉volg = −
∫
X

〈2∂̄∗B ∂̄∗Bβ, α〉volg = −
∫
X

〈2β, ∂̄2
Bα〉volg

=

∫
X

〈
2β,−F 0,2

B α+N(∂Bα)
〉

volg =

∫
X

(
− 1

2
|α|2|β|2 + 2〈β,N(∂Bα)〉

)
volg

For the second term, we use ω ∧ FB = ω ∧ FωB , the curvature equation and the fact that ω ∧ ω = 2volg , or
equivalently ∗(ω ∧ ω) = 2, to find:∫

X

〈i ∗ (ω ∧ FBα), α〉volg =

∫
X

〈i ∗ (ω ∧ FωBα), α〉volg = −1

8

∫
X

〈∗(ω ∧ (|α|2 − |β|2 − r)ωα), α〉volg

= −1

4

∫
X

|α|2
(
|α|2 − |β|2 − r

)
volg

Putting this all together and isolating the term involving the Nijenhuis tensor, we find:

2

∫
X

〈β,N(∂Bα)〉volg =

∫
X

(
|dBα|2 +

1

2
|α|2|β|2 +

1

4

(
|α|2 − |β|2 − r

)
|α|2

)
volg

=

∫
X

(
|dBα|2 +

1

4
|α|2|β|2 +

1

4
(|α|2 − r)2 +

r

4
(|α|2 − r)

)
volg

Consider
E · [ω] =

∫
X

i

2π
FB ∧ ω =

∫
X

i

2π
FωB ∧ ω = − 1

8π

∫
X

(|α|2 − |β|2 − r)volg

By the so-called Peter-Paul inequality,∫
X

2〈β,N(∂Bα)〉volg ≤
∫
X

(
1

2
|dBα|2 + C|β|2

)
volg

for a constant C = C(g, J, ω,A0). Adding and subtracting 1
4r|β|

2 to our earlier expression for the term
involving the Nijenhuis tensor, we have

2

∫
X

〈β,N(∂Bα)〉volg =

∫
X

(
|dBα|2 +

1

4
|α|2|β|2 +

1

4
(|α|2 − r)2 − 2πr(E · [ω]) +

1

4
r|β|2

)
volg

≤
∫
X

(
1

2
|dBα|2 + C|β|2

)
volg

or, equivalently, we find

1

2
|dBα|2 +

1

4
(|α|2 − r)2 − 2πr(E · [ω]) +

1

4
r|β|2 ≤ C|β|2

Now choose r > 4C and generic and suppose SWX,ω(0) 6= 0. Then there must be a solution to the monopole
equations for parameters (g, η), hence our above estimate holds. Since all but one of the terms on the left
hand side is positive and the 1

4r|β|
2 alone already gives a positive contribution larger than C|β|2, we see

that necessarily E · [ω] ≥ 0.

If E · [ω] = 0, our inequality must be an equation and therefore β = 0, |α|2 = r and dBα = 0. Then α
is a non-vanishing section which trivializes E, hence E = 0, and B a product connection on E = X × C.
Hence, there is a unique solution (up to gauge) of the SW equations in the case E = 0. Since r is generic,
we conclude that SWX,ω(0) = ±1.
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